/* * Copyright (c) 1999-2018 Apple Inc. All rights reserved. * * @APPLE_LICENSE_HEADER_START@ * * This file contains Original Code and/or Modifications of Original Code * as defined in and that are subject to the Apple Public Source License * Version 2.0 (the 'License'). You may not use this file except in * compliance with the License. Please obtain a copy of the License at * http://www.opensource.apple.com/apsl/ and read it before using this * file. * * The Original Code and all software distributed under the License are * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. * Please see the License for the specific language governing rights and * limitations under the License. * * @APPLE_LICENSE_HEADER_END@ */ /* * Mach Operating System * Copyright (c) 1991,1990 Carnegie Mellon University * All Rights Reserved. * * Permission to use, copy, modify and distribute this software and its * documentation is hereby granted, provided that both the copyright * notice and this permission notice appear in all copies of the * software, derivative works or modified versions, and any portions * thereof, and that both notices appear in supporting documentation. * * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND FOR * ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. * * Carnegie Mellon requests users of this software to return to * * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU * School of Computer Science * Carnegie Mellon University * Pittsburgh PA 15213-3890 * * any improvements or extensions that they make and grant Carnegie Mellon * the rights to redistribute these changes. */ #include #ifndef _ROUTINE_H #define _ROUTINE_H #include "type.h" #include #include #include #include /* base kind arg */ #define akeNone (0) #define akeNormal (1) /* a normal, user-defined argument */ #define akeRequestPort (2) /* pointed at by rtRequestPort */ #define akeWaitTime (3) /* pointed at by rtWaitTime */ #define akeReplyPort (4) /* pointed at by rtReplyPort */ #define akeMsgOption (5) /* pointed at by rtMsgOption */ #define akeMsgSeqno (6) /* pointed at by rtMsgSeqno */ #define akeRetCode (7) /* pointed at by rtRetCode */ #define akeNdrCode (8) /* pointed at by rtNdrCode */ #define akeCount (9) /* a count arg for argParent */ #define akePoly (10) /* a poly arg for argParent */ #define akeDealloc (11) /* a deallocate arg for argParent */ #define akeCountInOut (12) /* a count-in-out arg */ #define akeSameCount (13) /* a samecount case: in fact, a no count! */ #define akeSubCount (14) /* a array of array case: subordinate arrays count */ #define akeImplicit (15) /* an implicit argument, from the trailer */ #define akeSecToken (16) /* an argument from the trailer: the security token */ #define akeAuditToken (17) /* an argument from the trailer: the audit token */ #define akeContextToken (18) /* an argument from the trailer: the context token */ #define akeSendTime (19) /* pointed at by rtWaitTime */ #define akeBITS (0x0000003f) #define akbRequest (0x00000040) /* has a msg_type in request */ #define akbReply (0x00000080) /* has a msg_type in reply */ #define akbUserArg (0x00000100) /* an arg on user-side */ #define akbServerArg (0x00000200) /* an arg on server-side */ #define akbSend (0x00000400) /* value carried in request */ #define akbSendBody (0x00000800) /* value carried in request body */ #define akbSendSnd (0x00001000) /* value stuffed into request */ #define akbSendRcv (0x00002000) /* value grabbed from request */ #define akbReturn (0x00004000) /* value carried in reply */ #define akbReturnBody (0x00008000) /* value carried in reply body */ #define akbReturnSnd (0x00010000) /* value stuffed into reply */ #define akbReturnRcv (0x00020000) /* value grabbed from reply */ #define akbReturnNdr (0x00040000) /* needs NDR conversion in reply */ #define akbReplyInit (0x00080000) /* reply value doesn't come from target routine */ #define akbReplyCopy (0x00200000) /* copy reply value from request */ #define akbVarNeeded (0x00400000) /* may need local var in server */ #define akbDestroy (0x00800000) /* call destructor function */ #define akbVariable (0x01000000) /* variable size inline data */ #define akbSendNdr (0x04000000) /* needs NDR conversion in request */ #define akbSendKPD (0x08000000) /* the arg is sent in the Kernel Processed Data section of the Request message */ #define akbReturnKPD (0x10000000) /* the arg is sent in the Kernel Processed Data section of the Reply message */ #define akbUserImplicit (0x20000000) /* the arg is Impl */ #define akbServerImplicit (0x40000000) /* the arg is Impl */ #define akbOverwrite (0x80000000) /* be careful, there aren't many bits left */ typedef u_int arg_kind_t; /* * akbRequest means msg_type/data fields are allocated in the request * msg. akbReply means msg_type/data fields are allocated in the * reply msg. These bits * control msg structure declarations packing, * and checking of mach_msg_type_t fields. * * akbUserArg means this argument is an argument to the user-side stub. * akbServerArg means this argument is an argument to * the server procedure called by the server-side stub. * * The akbSend* and akbReturn* bits control packing/extracting values * in the request and reply messages. * * akbSend means the argument's value is carried in the request msg. * akbSendBody implies akbSend; the value is carried in the msg body. * akbSendKPD is the equivalent of akbSendBody for Kernel Processed Data. * akbSendSnd implies akbSend; the value is stuffed into the request. * akbSendRcv implies akbSend; the value is pulled out of the request. * * akbReturn, akbReturnBody, akbReturnSnd, akbReturnRcv are defined * similarly but apply to the reply message. * * User-side code generation (header.c, user.c) and associated code * should use akbSendSnd and akbReturnRcv, but not akbSendRcv and * akbReturnSnd. Server-side code generation (server.c) is reversed. * Code generation should use the more specific akb{Send,Return}{Snd,Rcv} * bits when possible, instead of akb{Send,Return}. * * Note that akRetCode and akReturn lack any Return bits, although * there is a value in the msg. These guys are packed/unpacked * with special code, unlike other arguments. * * akbReplyInit implies akbReply. It means the server-side stub * should initialize the field, because its value does not come * from the execution of the target routine: the setting of the * NDR record is the sole example (at the moment) of use of this flag. * * akbVariable means the argument has variable-sized inline data. * It isn't currently used for code generation, but routine.c * does use it internally. It is added in rtAugmentArgKind. * * akbReplyCopy and akbVarNeeded help control code generation in the * server-side stub. The preferred method of handling data in the * server-side stub avoids copying into/out-of local variables. In * arguments get passed directly to the server proc from the request msg. * Out arguments get stuffed directly into the reply msg by the server proc. * For InOut arguments, the server proc gets the address of the data in * the request msg, and the resulting data gets copied to the reply msg. * Some arguments need a local variable in the server-side stub. The * code extracts the data from the request msg into the variable, and * stuff the reply msg from the variable. * * akbReplyCopy implies akbReply. It means the data should get copied * from the request msg to the reply msg after the server proc is called. * It is only used by akInOut. akTid doesn't need it because the tid * data in the reply msg is initialized in the server demux function. * * akbVarNeeded means the argument needs a local variable in the * server-side stub. It is added in rtAugmentArgKind and * rtCheckVariable. An argument shouldn't have all three of * akbReturnSnd, akbVarNeeded and akbReplyCopy, because this indicates * the reply msg should be stuffed both ways. * * akbDestroy helps control code generation in the server-side stub. * It means this argument has a destructor function which should be called. * * akbOverwrite is used to identify the arguments that have to put an entry in * the scatter list (the message-template used by the User stub to specify * where the out-of-line data sent by server has to land). * * akbUserImplicit (akbServerImplicit) is used to mark the arguments that * correspond to implicit data (data generated by the kernel and inserted in * the trailer). * * Header file generation (header.c) uses: * akbUserArg * * User stub generation (user.c) uses: * akbUserArg, akbRequest, akbReply, akbSendSnd, * akbSendBody, akbSendKPD, akbReturnRcv, akbOverwrite, akbUserImplicit * * Server stub generation (server.c) uses: * akbServerArg, akbRequest, akbReply, akbSendRcv, akbReturnSnd, * akbReplyCopy, akbVarNeeded, akbSendBody, akbServerImplicit * * * During code generation, the routine, argument, and type data structures * are read-only. The code generation functions' output is their only * side-effect. * * * Style note: * Code can use logical operators (|, &, ~) on akb values. * ak values should be manipulated with the ak functions. */ /* various useful combinations */ #define akbNone (0) #define akbAll (~akbNone) #define akbAllBits (~akeBITS) #define akbSendBits (akbSend|akbSendBody|akbSendSnd|akbSendRcv) #define akbReturnBits (akbReturn|akbReturnBody|akbReturnSnd|akbReturnRcv) #define akbSendReturnBits (akbSendBits|akbReturnBits) #define akNone akeNone #define akIn akAddFeature(akeNormal, \ akbUserArg|akbServerArg|akbRequest|akbSendBits) #define akOut akAddFeature(akeNormal, \ akbUserArg|akbServerArg|akbReply|akbReturnBits) #define akServerImpl akAddFeature(akeImplicit, \ akbServerArg|akbServerImplicit|akbSend|akbSendRcv) #define akUserImpl akAddFeature(akeImplicit, \ akbUserArg|akbUserImplicit|akbReturn|akbReturnRcv) #define akServerSecToken akAddFeature(akeSecToken, \ akbServerArg|akbServerImplicit|akbSend|akbSendRcv) #define akUserSecToken akAddFeature(akeSecToken, \ akbUserArg|akbUserImplicit|akbReturn|akbReturnRcv) #define akSecToken akAddFeature(akeSecToken, \ akbServerArg|akbServerImplicit|akbSend|akbSendRcv| \ akbUserArg|akbUserImplicit|akbReturn|akbReturnRcv) #define akServerAuditToken akAddFeature(akeAuditToken, \ akbServerArg|akbServerImplicit|akbSend|akbSendRcv) #define akUserAuditToken akAddFeature(akeAuditToken, \ akbUserArg|akbUserImplicit|akbReturn|akbReturnRcv) #define akAuditToken akAddFeature(akeAuditToken, \ akbServerArg|akbServerImplicit|akbSend|akbSendRcv| \ akbUserArg|akbUserImplicit|akbReturn|akbReturnRcv) #define akServerContextToken akAddFeature(akeContextToken, \ akbServerArg|akbServerImplicit|akbSend|akbSendRcv) #define akMsgSeqno akAddFeature(akeMsgSeqno, \ akbServerArg|akbServerImplicit|akbSend|akbSendRcv) #define akInOut akAddFeature(akeNormal, \ akbUserArg|akbServerArg|akbRequest|akbReply| \ akbSendBits|akbReturnBits|akbReplyCopy) #define akRequestPort akAddFeature(akeRequestPort, \ akbUserArg|akbServerArg|akbSend|akbSendSnd|akbSendRcv) #define akWaitTime akAddFeature(akeWaitTime, akbUserArg) #define akSendTime akAddFeature(akeSendTime, akbUserArg) #define akMsgOption akAddFeature(akeMsgOption, akbUserArg) #define akReplyPort akAddFeature(akeReplyPort, \ akbUserArg|akbServerArg|akbSend|akbSendSnd|akbSendRcv) #define akUReplyPort akAddFeature(akeReplyPort, \ akbUserArg|akbSend|akbSendSnd|akbSendRcv) #define akSReplyPort akAddFeature(akeReplyPort, \ akbServerArg|akbSend|akbSendSnd|akbSendRcv) #define akRetCode akAddFeature(akeRetCode, akbReply|akbReturnBody) #define akCount akAddFeature(akeCount, \ akbUserArg|akbServerArg) #define akPoly akePoly #define akDealloc akAddFeature(akeDealloc, akbUserArg) #define akCountInOut akAddFeature(akeCountInOut, akbRequest|akbSendBits) #define akCheck(ak, bits) ((ak) & (bits)) #define akCheckAll(ak, bits) (akCheck(ak, bits) == (bits)) #define akAddFeature(ak, bits) ((ak)|(bits)) #define akRemFeature(ak, bits) ((ak)&~(bits)) #define akIdent(ak) ((ak) & akeBITS) #define argIsIn(arg) (akIdent(arg->argKind) == akeNormal && \ akCheck(arg->argKind, akbRequest)) #define argIsOut(arg) (akIdent(arg->argKind) == akeNormal && \ akCheck(arg->argKind, akbReply)) /* * The arguments to a routine/function are linked in left-to-right order. * argName is used for error messages and pretty-printing, * not code generation. Code generation shouldn't make any assumptions * about the order of arguments, esp. count and poly arguments. * (Unfortunately, code generation for inline variable-sized arguments * does make such assumptions.) * * argVarName is the name used in generated code for function arguments * and local variable names. argMsgField is the name used in generated * code for the field in msgs where the argument's value lives. * argTTName is the name used in generated code for msg-type fields and * static variables used to initialize those fields. argPadName is the * name used in generated code for a padding field in msgs. * * argFlags can be used to override the deallocate bits * in the argument's type. rtProcessArgFlags sets argDeallocate * from it and the type. Code generation shouldn't use * argFlags. * * argCount, argPoly, and argDealloc get to the implicit count, poly, * and dealloc arguments associated with the argument; they should be * used instead of argNext. In these implicit arguments, argParent is * a pointer to the "real" arg. * * In count arguments, argMultiplier is a scaling factor applied to * the count arg's value to get msg-type-number. It is equal to * argParent->argType->itElement->itNumber * */ typedef struct argument { /* if argKind == akReturn, then argName is name of the function */ identifier_t argName; struct argument *argNext; arg_kind_t argKind; ipc_type_t *argType; /* Kernel Processed Data */ mach_msg_descriptor_type_t argKPD_Type; /* KPD type: port, ool, port+ool */ void (* argKPD_Template)(FILE *file, struct argument *arg, boolean_t in); /* KPD discipline for static templates */ void (* argKPD_Init)(FILE *file, struct argument *arg); /* KPD discipline for initializing */ void (* argKPD_Pack)(FILE *file, struct argument *ar); /* KPD discipline for packing */ void (* argKPD_Extract)(FILE *file, struct argument *arg); /* KPD discipline for extracting */ void (* argKPD_TypeCheck)(FILE *file, struct argument *ar); /* KPD discipline for type checking */ string_t argVarName; /* local variable and argument names */ string_t argMsgField; /* message field's name */ string_t argTTName; /* name for msg_type fields, static vars */ string_t argPadName; /* name for pad field in msg */ string_t argSuffix; /* name extension for KPDs */ ipc_flags_t argFlags; dealloc_t argDeallocate; /* overrides argType->itDeallocate */ boolean_t argCountInOut; struct routine *argRoutine; /* routine we are part of */ struct argument *argCount; /* our count arg, if present */ struct argument *argSubCount; /* our sub-count arg, if present (variable subordinate arrays) */ struct argument *argCInOut; /* our CountInOut arg, if present */ struct argument *argPoly; /* our poly arg, if present */ struct argument *argDealloc; /* our dealloc arg, if present */ struct argument *argSameCount; /* the arg to take the count from, if present */ struct argument *argParent; /* in a count or poly arg, the base arg */ u_int argMultiplier; /* for Count argument: parent is a multiple of a basic IPC type. Argument must be multiplied by Multiplier to get IPC number-of-elements. */ /* how variable/inline args precede this one, in request and reply */ u_int argRequestPos; u_int argReplyPos; /* whether argument is by reference, on user and server side */ boolean_t argByReferenceUser; boolean_t argByReferenceServer; boolean_t argTempOnStack; /* A temporary for the short-circuiting * code when -maxonstack is used. */ } argument_t; /* * The various routine kinds' peculiarities are abstracted by rtCheckRoutine * into attributes like rtOneWay, etc. These are what * code generation should use. It is Bad Form for code generation to * test rtKind. */ typedef enum { rkRoutine, rkSimpleRoutine } routine_kind_t; typedef struct routine { identifier_t rtName; routine_kind_t rtKind; argument_t *rtArgs; u_int rtNumber; /* used for making msg ids */ identifier_t rtUserName; /* user-visible name (UserPrefix + Name) */ identifier_t rtServerName; /* server-side name (ServerPrefix + Name) */ identifier_t rtErrorName; /* error-handler name */ boolean_t rtOneWay; /* SimpleRoutine */ boolean_t rtSimpleRequest; boolean_t rtSimpleReply; boolean_t rtUseSpecialReplyPort; u_int rtConsumeOnSendError; u_int rtNumRequestVar; /* number of variable/inline args in request */ u_int rtNumReplyVar; /* number of variable/inline args in reply */ u_int rtMaxRequestPos; /* maximum of argRequestPos */ u_int rtMaxReplyPos; /* maximum of argReplyPos */ u_int rtRequestKPDs; /* number of Kernel Processed Data entries */ u_int rtReplyKPDs; /* number of Kernel Processed Data entries */ u_int rtOverwrite; /* number of Overwrite entries */ u_int rtOverwriteKPDs; /* number of entries in the Overwrite template */ boolean_t rtNoReplyArgs; /* if so, no reply message arguments beyond what the server dispatch routine inserts */ boolean_t rtRequestFits; /* Request fits within onstack limit */ boolean_t rtReplyFits; /* Reply fits within onstack limit */ boolean_t rtRequestUsedLimit;/* User type limit used in deciding whether request fits within onstack limit */ boolean_t rtReplyUsedLimit; /* User type limit used in deciding whether reply fits within onstack limit */ u_int rtRequestSizeKnown; /* Max size of known portion of request */ u_int rtReplySizeKnown; /* Max size of known portion of request */ u_int rtServerImpl; /* Implicit data requested */ u_int rtUserImpl; /* Implicit data requested */ /* distinguished arguments */ argument_t *rtRetCArg; /* the Routine has this argument tagged as RetCode */ argument_t *rtRequestPort; /* always non-NULL, defaults to first arg */ argument_t *rtReplyPort; /* always non-NULL, defaults to Mig-supplied */ argument_t *rtRetCode; /* always non-NULL */ argument_t *rtNdrCode; /* always non-NULL */ argument_t *rtWaitTime; /* if non-NULL, will use MACH_RCV_TIMEOUT */ argument_t *rtMsgOption; /* always non-NULL, defaults to NONE */ /* more info's used only when UseEventLogger is turned on */ u_int rtCountPortsIn; /* how many in-line Ports are sent */ u_int rtCountOolPortsIn; /* how many out_of-line Ports are sent */ u_int rtCountOolIn; /* how many bytes out_of-line are sent */ u_int rtCountPortsOut; /* how many in-line Ports are rcv'd */ u_int rtCountOolPortsOut; /* how many out_of-line Ports are rcv'd */ u_int rtCountOolOut; /* how many bytes out_of-line are rcv'd */ u_int rtTempBytesOnStack; /* A temporary for the short-circuiting * code when -maxonstack is used. */ } routine_t; #define rtNULL ((routine_t *) 0) #define argNULL ((argument_t *) 0) #define argKPD_NULL ((mach_msg_descriptor_type_t) -1) #define rtMessOnStack(rt) ((rt)->rtRequestFits && (rt)->rtReplyFits) /* * These are the ways MiG organizes stub parameters */ #define IS_VARIABLE_SIZED_UNTYPED(x) ((x)->itVarArray && \ (x)->itInLine && \ !(x)->itPortType) #define IS_KERN_PROC_DATA(x) (!(x)->itInLine || (x)->itPortType) #define IS_OPTIONAL_NATIVE(x) ((x)->itNative && \ (x)->itNativePointer && \ (x)->itBadValue != NULL) /* * I consider the case of fixed/variable bounded arrays of ports or ool or oolport */ #define IS_MULTIPLE_KPD(x) ((x)->itKPD_Number > 1) /* * I consider the case of MiG presenting data as it is inLine, even * if it is sent/rcvd as out-of-line */ #define IS_MIG_INLINE_EMUL(x) ((x)->itMigInLine) extern u_int rtNumber; /* rt->rtNumber will be initialized */ extern routine_t *rtAlloc(void); /* skip a number */ extern void rtSkip(void); extern argument_t *argAlloc(void); extern boolean_t rtCheckMask(argument_t *args, u_int mask); extern boolean_t rtCheckMaskFunction(argument_t *args, u_int mask, boolean_t (*func)(argument_t *arg)); extern routine_t * rtMakeRoutine(identifier_t name, argument_t *args); extern routine_t * rtMakeSimpleRoutine(identifier_t name, argument_t *args); extern void rtPrintRoutine(routine_t *rt); extern void rtCheckRoutine(routine_t *rt); extern char *rtRoutineKindToStr(routine_kind_t rk); extern int rtCountArgDescriptors(argument_t *args, int *argcount); extern void rtMinRequestSize(FILE *file, routine_t *rt, char *str); extern void rtMinReplySize(FILE *file, routine_t *rt, char *str); #define RPCUserStruct(arg) (arg->argType->itStruct && arg->argType->itInLine) #define RPCString(arg) (arg->argType->itString && arg->argType->itInLine) #define RPCOutStruct(arg) (arg->argType->itStruct &&\ argIsOut(arg) && (! arg->argType->itVarArray)) #define RPCOutWord(arg) (RPCUserStruct(arg) &&\ (arg->argType->itSize <= 32) &&\ (arg->argType->itNumber == 1) && argIsOut(arg)) #define RPCPort(arg) (arg->argKPD_Type == MACH_MSG_PORT_DESCRIPTOR) #define RPCPortArray(arg) (arg->argKPD_Type == MACH_MSG_OOL_PORTS_DESCRIPTOR) #define RPCVariableArray(arg) ((arg->argType->itVarArray) &&\ !RPCPort(arg) && !RPCPortArray(arg)) #define RPCFixedArray(arg) (((! arg->argType->itVarArray) &&\ !RPCPort(arg) && !RPCPortArray(arg) &&\ (arg->argType->itNumber > 1) &&\ !RPCUserStruct(arg)) ||\ RPCString(arg) ||\ RPCOutWord(arg) ||\ RPCOutStruct(arg)) #endif /* _ROUTINE_H */