-/* $NetBSD: primes.c,v 1.13 2007/12/15 19:44:42 perry Exp $ */
+/* $NetBSD: primes.c,v 1.22 2018/02/03 15:40:29 christos Exp $ */
/*
* Copyright (c) 1989, 1993
#include <sys/cdefs.h>
#ifndef lint
-__COPYRIGHT("@(#) Copyright (c) 1989, 1993\n\
- The Regents of the University of California. All rights reserved.\n");
+__COPYRIGHT("@(#) Copyright (c) 1989, 1993\
+ The Regents of the University of California. All rights reserved.");
#endif /* not lint */
#ifndef lint
#if 0
static char sccsid[] = "@(#)primes.c 8.5 (Berkeley) 5/10/95";
#else
-__RCSID("$NetBSD: primes.c,v 1.13 2007/12/15 19:44:42 perry Exp $");
+__RCSID("$NetBSD: primes.c,v 1.22 2018/02/03 15:40:29 christos Exp $");
#endif
#endif /* not lint */
/*
* primes - generate a table of primes between two values
*
- * By: Landon Curt Noll chongo@toad.com, ...!{sun,tolsoft}!hoptoad!chongo
- *
- * chongo <for a good prime call: 391581 * 2^216193 - 1> /\oo/\
+ * By Landon Curt Noll, http://www.isthe.com/chongo/index.html /\oo/\
*
* usage:
- * primes [start [stop]]
+ * primes [-dh] [start [stop]]
*
* Print primes >= start and < stop. If stop is omitted,
- * the value 4294967295 (2^32-1) is assumed. If start is
+ * the value SPSPMAX is assumed. If start is
* omitted, start is read from standard input.
+ * -d: print difference to previous prime, e.g. 3 (1)
+ * -h: print primes in hexadecimal
*
* validation check: there are 664579 primes between 0 and 10^7
*/
#include <ctype.h>
#include <err.h>
#include <errno.h>
+#include <inttypes.h>
#include <limits.h>
#include <math.h>
-#include <memory.h>
#include <stdio.h>
#include <stdlib.h>
+#include <string.h>
#include <unistd.h>
#include "primes.h"
*
* We only sieve the odd numbers. The base of our sieve windows are always
* odd. If the base of table is 1, table[i] represents 2*i-1. After the
- * sieve, table[i] == 1 if and only iff 2*i-1 is prime.
+ * sieve, table[i] == 1 if and only if 2*i-1 is prime.
*
* We make TABSIZE large to reduce the overhead of inner loop setup.
*/
-char table[TABSIZE]; /* Eratosthenes sieve of odd numbers */
+static char table[TABSIZE]; /* Eratosthenes sieve of odd numbers */
-/*
- * prime[i] is the (i-1)th prime.
- *
- * We are able to sieve 2^32-1 because this byte table yields all primes
- * up to 65537 and 65537^2 > 2^32-1.
- */
-extern const ubig prime[];
-extern const ubig *pr_limit; /* largest prime in the prime array */
+static int dflag, hflag;
-/*
- * To avoid excessive sieves for small factors, we use the table below to
- * setup our sieve blocks. Each element represents a odd number starting
- * with 1. All non-zero elements are factors of 3, 5, 7, 11 and 13.
- */
-extern const char pattern[];
-extern const int pattern_size; /* length of pattern array */
+static void primes(uint64_t, uint64_t);
+static uint64_t read_num_buf(void);
+static void usage(void) __dead;
-int main(int, char *[]);
-void primes(ubig, ubig);
-ubig read_num_buf(void);
-void usage(void) __dead;
int
-main(argc, argv)
- int argc;
- char *argv[];
+main(int argc, char *argv[])
{
- ubig start; /* where to start generating */
- ubig stop; /* don't generate at or above this value */
+ uint64_t start; /* where to start generating */
+ uint64_t stop; /* don't generate at or above this value */
int ch;
char *p;
- while ((ch = getopt(argc, argv, "")) != -1)
+ while ((ch = getopt(argc, argv, "dh")) != -1)
switch (ch) {
+ case 'd':
+ dflag++;
+ break;
+ case 'h':
+ hflag++;
+ break;
case '?':
default:
usage();
argv += optind;
start = 0;
- stop = BIG;
+ stop = (uint64_t)(-1);
/*
- * Convert low and high args. Strtoul(3) sets errno to
+ * Convert low and high args. Strtoumax(3) sets errno to
* ERANGE if the number is too large, but, if there's
* a leading minus sign it returns the negation of the
* result of the conversion, which we'd rather disallow.
errx(1, "negative numbers aren't permitted.");
errno = 0;
- start = strtoul(argv[0], &p, 10);
+ start = strtoumax(argv[0], &p, 0);
if (errno)
err(1, "%s", argv[0]);
if (*p != '\0')
errx(1, "%s: illegal numeric format.", argv[0]);
errno = 0;
- stop = strtoul(argv[1], &p, 10);
+ stop = strtoumax(argv[1], &p, 0);
if (errno)
err(1, "%s", argv[1]);
if (*p != '\0')
errx(1, "negative numbers aren't permitted.");
errno = 0;
- start = strtoul(argv[0], &p, 10);
+ start = strtoumax(argv[0], &p, 0);
if (errno)
err(1, "%s", argv[0]);
if (*p != '\0')
if (start > stop)
errx(1, "start value must be less than stop value.");
primes(start, stop);
- exit(0);
+ return (0);
}
/*
* read_num_buf --
- * This routine returns a number n, where 0 <= n && n <= BIG.
+ * This routine returns a number n, where 0 <= n && n <= ULONG_MAX.
*/
-ubig
-read_num_buf()
+static uint64_t
+read_num_buf(void)
{
- ubig val;
- char *p, buf[100]; /* > max number of digits. */
+ uint64_t val;
+ char *p, buf[LINE_MAX]; /* > max number of digits. */
for (;;) {
if (fgets(buf, sizeof(buf), stdin) == NULL) {
err(1, "stdin");
exit(0);
}
- for (p = buf; isblank(*p); ++p);
+ for (p = buf; isblank((unsigned char)*p); ++p);
if (*p == '\n' || *p == '\0')
continue;
if (*p == '-')
errx(1, "negative numbers aren't permitted.");
errno = 0;
- val = strtoul(buf, &p, 10);
+ val = strtoumax(buf, &p, 0);
if (errno)
err(1, "%s", buf);
if (*p != '\n')
/*
* primes - sieve and print primes from start up to and but not including stop
*/
-void
-primes(start, stop)
- ubig start; /* where to start generating */
- ubig stop; /* don't generate at or above this value */
+static void
+primes(uint64_t start, uint64_t stop)
{
char *q; /* sieve spot */
- ubig factor; /* index and factor */
+ uint64_t factor; /* index and factor */
char *tab_lim; /* the limit to sieve on the table */
- const ubig *p; /* prime table pointer */
- ubig fact_lim; /* highest prime for current block */
- ubig mod; /* temp storage for mod */
+ const uint64_t *p; /* prime table pointer */
+ uint64_t fact_lim; /* highest prime for current block */
+ uint64_t mod; /* temp storage for mod */
+ uint64_t prev = 0;
/*
* A number of systems can not convert double values into unsigned
* longs when the values are larger than the largest signed value.
- * We don't have this problem, so we can go all the way to BIG.
+ * We don't have this problem, so we can go all the way to ULONG_MAX.
*/
if (start < 3) {
- start = (ubig)2;
+ start = 2;
}
if (stop < 3) {
- stop = (ubig)2;
+ stop = 2;
}
if (stop <= start) {
return;
for (p = &prime[0], factor = prime[0];
factor < stop && p <= pr_limit; factor = *(++p)) {
if (factor >= start) {
- printf("%lu\n", (unsigned long) factor);
+ printf(hflag ? "%" PRIx64 : "%" PRIu64, factor);
+ if (dflag) {
+ printf(" (%" PRIu64 ")", factor - prev);
+ }
+ putchar('\n');
}
+ prev = factor;
}
/* return early if we are done */
if (p <= pr_limit) {
/* note highest useful factor and sieve spot */
if (stop-start > TABSIZE+TABSIZE) {
tab_lim = &table[TABSIZE]; /* sieve it all */
- fact_lim = (int)sqrt(
- (double)(start)+TABSIZE+TABSIZE+1.0);
+ fact_lim = sqrt(start+1.0+TABSIZE+TABSIZE);
} else {
tab_lim = &table[(stop-start)/2]; /* partial sieve */
- fact_lim = (int)sqrt((double)(stop)+1.0);
+ fact_lim = sqrt(stop+1.0);
}
/* sieve for factors >= 17 */
factor = 17; /* 17 is first prime to use */
} else {
q = &table[mod ? factor-(mod/2) : 0];
}
- /* sive for our current factor */
+ /* sieve for our current factor */
for ( ; q < tab_lim; q += factor) {
*q = '\0'; /* sieve out a spot */
}
- } while ((factor=(ubig)(*(p++))) <= fact_lim);
+ factor = *p++;
+ } while (factor <= fact_lim);
/*
* print generated primes
*/
for (q = table; q < tab_lim; ++q, start+=2) {
if (*q) {
- printf("%lu\n", (unsigned long) start);
+ if (start > SIEVEMAX) {
+ if (!isprime(start))
+ continue;
+ }
+ printf(hflag ? "%" PRIx64 : "%" PRIu64, start);
+ if (dflag && (prev || (start <= *pr_limit))) {
+ printf(" (%" PRIu64 ")", start - prev);
+ }
+ putchar('\n');
+ prev = start;
}
}
}
}
-void
-usage()
+static void
+usage(void)
{
- (void)fprintf(stderr, "usage: primes [start [stop]]\n");
+ (void)fprintf(stderr, "usage: primes [-dh] [start [stop]]\n");
exit(1);
}