From 77978dbe66ff160fb53979c75d118a7d6ebf6ba5 Mon Sep 17 00:00:00 2001 From: elad Date: Tue, 24 Jan 2006 18:51:20 +0000 Subject: Remove qsiefe/qsafe from games. Will be put back in usr.bin. --- moduli/qsieve/qsieve.c | 473 ------------------------------------------------- 1 file changed, 473 deletions(-) delete mode 100644 moduli/qsieve/qsieve.c (limited to 'moduli/qsieve/qsieve.c') diff --git a/moduli/qsieve/qsieve.c b/moduli/qsieve/qsieve.c deleted file mode 100644 index 34e5a339..00000000 --- a/moduli/qsieve/qsieve.c +++ /dev/null @@ -1,473 +0,0 @@ -/* $NetBSD: qsieve.c,v 1.1 2006/01/19 23:23:58 elad Exp $ */ - -/*- - * Copyright 1994 Phil Karn - * Copyright 1996-1998, 2003 William Allen Simpson - * Copyright 2000 Niels Provos - * All rights reserved. - * - * Redistribution and use in source and binary forms, with or without - * modification, are permitted provided that the following conditions - * are met: - * 1. Redistributions of source code must retain the above copyright - * notice, this list of conditions and the following disclaimer. - * 2. Redistributions in binary form must reproduce the above copyright - * notice, this list of conditions and the following disclaimer in the - * documentation and/or other materials provided with the distribution. - * - * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR - * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES - * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. - * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, - * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT - * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, - * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY - * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT - * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF - * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. - */ - -/* - * Sieve candidates for "safe" primes, - * suitable for use as Diffie-Hellman moduli; - * that is, where q = (p-1)/2 is also prime. - * - * This is the first of two steps. - * This step is memory intensive. - * - * 1996 May William Allen Simpson - * extracted from earlier code by Phil Karn, April 1994. - * save large primes list for later processing. - * 1998 May William Allen Simpson - * parameterized. - * 2000 Dec Niels Provos - * convert from GMP to openssl BN. - * 2003 Jun William Allen Simpson - * change outfile definition slightly to match openssh mistake. - * move common file i/o to own file for better documentation. - * redo memory again. - */ - -#include -#include -#include -#include -#include -#include -#include "qfile.h" - -/* define DEBUG_LARGE 1 */ -/* define DEBUG_SMALL 1 */ - -/* - * Using virtual memory can cause thrashing. This should be the largest - * number that is supported without a large amount of disk activity -- - * that would increase the run time from hours to days or weeks! - */ -#define LARGE_MINIMUM (8UL) /* megabytes */ - -/* - * Do not increase this number beyond the unsigned integer bit size. - * Due to a multiple of 4, it must be LESS than 128 (yielding 2**30 bits). - */ -#define LARGE_MAXIMUM (127UL) /* megabytes */ - -/* - * Constant: assuming 8 bit bytes and 32 bit words - */ -#define SHIFT_BIT (3) -#define SHIFT_BYTE (2) -#define SHIFT_WORD (SHIFT_BIT+SHIFT_BYTE) -#define SHIFT_MEGABYTE (20) -#define SHIFT_MEGAWORD (SHIFT_MEGABYTE-SHIFT_BYTE) - -/* - * Constant: when used with 32-bit integers, the largest sieve prime - * has to be less than 2**32. - */ -#define SMALL_MAXIMUM (0xffffffffUL) - -/* - * Constant: can sieve all primes less than 2**32, as 65537**2 > 2**32-1. - */ -#define TINY_NUMBER (1UL<<16) - -/* - * Ensure enough bit space for testing 2*q. - */ -#define TEST_MAXIMUM (1UL<<16) -#define TEST_MINIMUM (QSIZE_MINIMUM + 1) -/* real TEST_MINIMUM (1UL << (SHIFT_WORD - TEST_POWER)) */ -#define TEST_POWER (3) /* 2**n, n < SHIFT_WORD */ - -/* - * bit operations on 32-bit words - */ -#define BIT_CLEAR(a,n) ((a)[(n)>>SHIFT_WORD] &= ~(1U << ((n) & 31))) -#define BIT_SET(a,n) ((a)[(n)>>SHIFT_WORD] |= (1U << ((n) & 31))) -#define BIT_TEST(a,n) ((a)[(n)>>SHIFT_WORD] & (1U << ((n) & 31))) - -/* - * sieve relative to the initial value - */ -uint32_t *LargeSieve; -uint32_t largewords; -uint32_t largetries; -uint32_t largenumbers; -uint32_t largememory; /* megabytes */ -uint32_t largebits; -BIGNUM *largebase; - -/* - * sieve 2**30 in 2**16 parts - */ -uint32_t *SmallSieve; -uint32_t smallbits; -uint32_t smallbase; - -/* - * sieve 2**16 - */ -uint32_t *TinySieve; -uint32_t tinybits; - -static void usage(void); -void sieve_large(uint32_t); - -/* - * Sieve p's and q's with small factors - */ -void -sieve_large(uint32_t s) -{ - BN_ULONG r; - BN_ULONG u; - -#ifdef DEBUG_SMALL - (void)fprintf(stderr, "%lu\n", s); -#endif - largetries++; - /* r = largebase mod s */ - r = BN_mod_word(largebase, (BN_ULONG) s); - if (r == 0) { - /* s divides into largebase exactly */ - u = 0; - } else { - /* largebase+u is first entry divisible by s */ - u = s - r; - } - - if (u < largebits * 2) { - /* - * The sieve omits p's and q's divisible by 2, so ensure that - * largebase+u is odd. Then, step through the sieve in - * increments of 2*s - */ - if (u & 0x1) { - /* Make largebase+u odd, and u even */ - u += s; - } - - /* Mark all multiples of 2*s */ - for (u /= 2; u < largebits; u += s) { - BIT_SET(LargeSieve, (uint32_t)u); - } - } - - /* r = p mod s */ - r = (2 * r + 1) % s; - - if (r == 0) { - /* s divides p exactly */ - u = 0; - } else { - /* p+u is first entry divisible by s */ - u = s - r; - } - - if (u < largebits * 4) { - /* - * The sieve omits p's divisible by 4, so ensure that - * largebase+u is not. Then, step through the sieve in - * increments of 4*s - */ - while (u & 0x3) { - if (SMALL_MAXIMUM - u < s) { - return; - } - - u += s; - } - - /* Mark all multiples of 4*s */ - for (u /= 4; u < largebits; u += s) { - BIT_SET(LargeSieve, (uint32_t)u); - } - } -} - -/* - * list candidates for Sophie-Germaine primes - * (where q = (p-1)/2) - * to standard output. - * The list is checked against small known primes - * (less than 2**30). - */ -int -main(int argc, char *argv[]) -{ - BIGNUM *q; - uint32_t j; - int power; - uint32_t r; - uint32_t s; - uint32_t smallwords = TINY_NUMBER >> 6; - uint32_t t; - time_t time_start; - time_t time_stop; - uint32_t tinywords = TINY_NUMBER >> 6; - unsigned int i; - - setprogname(argv[0]); - - if (argc < 3) { - usage(); - } - - /* - * Set power to the length in bits of the prime to be generated. - * This is changed to 1 less than the desired safe prime moduli p. - */ - power = (int) strtoul(argv[2], NULL, 10); - if (power > TEST_MAXIMUM) { - errx(1, "Too many bits: %d > %lu.", power, - (unsigned long)TEST_MAXIMUM); - } else if (power < TEST_MINIMUM) { - errx(1, "Too few bits: %d < %lu.", power, - (unsigned long)TEST_MINIMUM); - } - - power--; /* decrement before squaring */ - - /* - * The density of ordinary primes is on the order of 1/bits, so the - * density of safe primes should be about (1/bits)**2. Set test range - * to something well above bits**2 to be reasonably sure (but not - * guaranteed) of catching at least one safe prime. - */ - largewords = (uint32_t)((unsigned long) - (power * power) >> (SHIFT_WORD - TEST_POWER)); - - /* - * Need idea of how much memory is available. We don't have to use all - * of it. - */ - largememory = (uint32_t)strtoul(argv[1], NULL, 10); - if (largememory > LARGE_MAXIMUM) { - warnx("Limited memory: %u MB; limit %lu MB.", largememory, - LARGE_MAXIMUM); - largememory = LARGE_MAXIMUM; - } - - if (largewords <= (largememory << SHIFT_MEGAWORD)) { - warnx("Increased memory: %u MB; need %u bytes.", - largememory, (largewords << SHIFT_BYTE)); - largewords = (largememory << SHIFT_MEGAWORD); - } else if (largememory > 0) { - warnx("Decreased memory: %u MB; want %u bytes.", - largememory, (largewords << SHIFT_BYTE)); - largewords = (largememory << SHIFT_MEGAWORD); - } - - if ((TinySieve = (uint32_t *) calloc((size_t) tinywords, sizeof(uint32_t))) == NULL) { - errx(1, "Insufficient memory for tiny sieve: need %u byts.", - tinywords << SHIFT_BYTE); - } - tinybits = tinywords << SHIFT_WORD; - - if ((SmallSieve = (uint32_t *) calloc((size_t) smallwords, sizeof(uint32_t))) == NULL) { - errx(1, "Insufficient memory for small sieve: need %u bytes.", - smallwords << SHIFT_BYTE); - } - smallbits = smallwords << SHIFT_WORD; - - /* - * dynamically determine available memory - */ - while ((LargeSieve = (uint32_t *)calloc((size_t)largewords, - sizeof(uint32_t))) == NULL) { - /* 1/4 MB chunks */ - largewords -= (1L << (SHIFT_MEGAWORD - 2)); - } - largebits = largewords << SHIFT_WORD; - largenumbers = largebits * 2; /* even numbers excluded */ - - /* validation check: count the number of primes tried */ - largetries = 0; - - q = BN_new(); - largebase = BN_new(); - - /* - * Generate random starting point for subprime search, or use - * specified parameter. - */ - if (argc < 4) { - BN_rand(largebase, power, 1, 1); - } else { - BIGNUM *a; - - a = largebase; - BN_hex2bn(&a, argv[2]); - } - - /* ensure odd */ - if (!BN_is_odd(largebase)) { - BN_set_bit(largebase, 0); - } - - time(&time_start); - (void)fprintf(stderr, - "%.24s Sieve next %u plus %d-bit start point:\n# ", - ctime(&time_start), largenumbers, power); - BN_print_fp(stderr, largebase); - (void)fprintf(stderr, "\n"); - - /* - * TinySieve - */ - for (i = 0; i < tinybits; i++) { - if (BIT_TEST(TinySieve, i)) { - /* 2*i+3 is composite */ - continue; - } - - /* The next tiny prime */ - t = 2 * i + 3; - - /* Mark all multiples of t */ - for (j = i + t; j < tinybits; j += t) { - BIT_SET(TinySieve, j); - } - - sieve_large(t); - } - - /* - * Start the small block search at the next possible prime. To avoid - * fencepost errors, the last pass is skipped. - */ - for (smallbase = TINY_NUMBER + 3; - smallbase < (SMALL_MAXIMUM - TINY_NUMBER); - smallbase += TINY_NUMBER) { - for (i = 0; i < tinybits; i++) { - if (BIT_TEST(TinySieve, i)) { - /* 2*i+3 is composite */ - continue; - } - - /* The next tiny prime */ - t = 2 * i + 3; - r = smallbase % t; - - if (r == 0) { - /* t divides into smallbase exactly */ - s = 0; - } else { - /* smallbase+s is first entry divisible by t */ - s = t - r; - } - - /* - * The sieve omits even numbers, so ensure that - * smallbase+s is odd. Then, step through the sieve in - * increments of 2*t - */ - if (s & 1) { - /* Make smallbase+s odd, and s even */ - s += t; - } - - /* Mark all multiples of 2*t */ - for (s /= 2; s < smallbits; s += t) { - BIT_SET(SmallSieve, s); - } - } - - /* - * SmallSieve - */ - for (i = 0; i < smallbits; i++) { - if (BIT_TEST(SmallSieve, i)) { - /* 2*i+smallbase is composite */ - continue; - } - - /* The next small prime */ - sieve_large((2 * i) + smallbase); - } - - memset(SmallSieve, 0, (size_t)(smallwords << SHIFT_BYTE)); - } - - time(&time_stop); - (void)fprintf(stderr, - "%.24s Sieved with %u small primes in %lu seconds\n", - ctime(&time_stop), largetries, - (long) (time_stop - time_start)); - - for (j = r = 0; j < largebits; j++) { - if (BIT_TEST(LargeSieve, j)) { - /* Definitely composite, skip */ - continue; - } - -#ifdef DEBUG_LARGE - (void)fprintf(stderr, "test q = largebase+%lu\n", 2 * j); -#endif - - BN_set_word(q, (unsigned long)(2 * j)); - BN_add(q, q, largebase); - - if (0 > qfileout(stdout, - (uint32_t) QTYPE_SOPHIE_GERMAINE, - (uint32_t) QTEST_SIEVE, - largetries, - (uint32_t) (power - 1), /* MSB */ - (uint32_t) (0), /* generator unknown */ - q)) { - break; - } - - r++; /* count q */ - } - - time(&time_stop); - - free(LargeSieve); - free(SmallSieve); - free(TinySieve); - - fflush(stdout); - /* fclose(stdout); */ - - (void) fprintf(stderr, "%.24s Found %u candidates\n", - ctime(&time_stop), r); - - return (0); -} - -static void -usage(void) -{ - (void)fprintf(stderr, "Usage: %s [initial]\n" - "Possible values for : 0, %lu to %lu\n" - "Possible values for : %lu to %lu\n", - getprogname(), - LARGE_MINIMUM, - LARGE_MAXIMUM, - (unsigned long) TEST_MINIMUM, - (unsigned long) TEST_MAXIMUM); - - exit(1); -} -- cgit v1.2.3-56-ge451