/* * Copyright (c) 1989 The Regents of the University of California. * All rights reserved. * * This code is derived from software contributed to Berkeley by * Landon Curt Noll. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by the University of * California, Berkeley and its contributors. * 4. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #ifndef lint char copyright[] = "@(#) Copyright (c) 1989 The Regents of the University of California.\n\ All rights reserved.\n"; #endif /* not lint */ #ifndef lint /*static char sccsid[] = "from: @(#)primes.c 5.4 (Berkeley) 6/1/90";*/ static char rcsid[] = "$Id: primes.c,v 1.3 1994/03/01 01:07:48 cgd Exp $"; #endif /* not lint */ /* * primes - generate a table of primes between two values * * By: Landon Curt Noll chongo@toad.com, ...!{sun,tolsoft}!hoptoad!chongo * * chongo /\oo/\ * * usage: * primes [start [stop]] * * Print primes >= start and < stop. If stop is omitted, * the value 4294967295 (2^32-1) is assumed. If start is * omitted, start is read from standard input. * * Prints "ouch" if start or stop is bogus. * * validation check: there are 664579 primes between 0 and 10^7 */ #include #include #include #include #include #include "primes.h" /* * Eratosthenes sieve table * * We only sieve the odd numbers. The base of our sieve windows are always * odd. If the base of table is 1, table[i] represents 2*i-1. After the * sieve, table[i] == 1 if and only iff 2*i-1 is prime. * * We make TABSIZE large to reduce the overhead of inner loop setup. */ char table[TABSIZE]; /* Eratosthenes sieve of odd numbers */ /* * prime[i] is the (i-1)th prime. * * We are able to sieve 2^32-1 because this byte table yields all primes * up to 65537 and 65537^2 > 2^32-1. */ extern ubig prime[]; extern ubig *pr_limit; /* largest prime in the prime array */ /* * To avoid excessive sieves for small factors, we use the table below to * setup our sieve blocks. Each element represents a odd number starting * with 1. All non-zero elements are factors of 3, 5, 7, 11 and 13. */ extern char pattern[]; extern int pattern_size; /* length of pattern array */ #define MAX_LINE 255 /* max line allowed on stdin */ char *read_num_buf(); /* read a number buffer */ void primes(); /* print the primes in range */ char *program; /* our name */ main(argc, argv) int argc; /* arg count */ char *argv[]; /* args */ { char buf[MAX_LINE+1]; /* input buffer */ char *ret; /* return result */ ubig start; /* where to start generating */ ubig stop; /* don't generate at or above this value */ /* * parse args */ program = argv[0]; start = 0; stop = BIG; if (argc == 3) { /* convert low and high args */ if (read_num_buf(NULL, argv[1]) == NULL) { fprintf(stderr, "%s: ouch\n", program); exit(1); } if (read_num_buf(NULL, argv[2]) == NULL) { fprintf(stderr, "%s: ouch\n", program); exit(1); } if (sscanf(argv[1], "%lu", &start) != 1) { fprintf(stderr, "%s: ouch\n", program); exit(1); } if (sscanf(argv[2], "%lu", &stop) != 1) { fprintf(stderr, "%s: ouch\n", program); exit(1); } } else if (argc == 2) { /* convert low arg */ if (read_num_buf(NULL, argv[1]) == NULL) { fprintf(stderr, "%s: ouch\n", program); exit(1); } if (sscanf(argv[1], "%lu", &start) != 1) { fprintf(stderr, "%s: ouch\n", program); exit(1); } } else { /* read input until we get a good line */ if (read_num_buf(stdin, buf) != NULL) { /* convert the buffer */ if (sscanf(buf, "%lu", &start) != 1) { fprintf(stderr, "%s: ouch\n", program); exit(1); } } else { exit(0); } } if (start > stop) { fprintf(stderr, "%s: ouch\n", program); exit(1); } primes(start, stop); exit(0); } /* * read_num_buf - read a number buffer from a stream * * Read a number on a line of the form: * * ^[ \t]*\(+?[0-9][0-9]\)*.*$ * * where ? is a 1-or-0 operator and the number is within \( \). * * If does not match the above pattern, it is ignored and a new * line is read. If the number is too large or small, we will * print ouch and read a new line. * * We have to be very careful on how we check the magnitude of the * input. We can not use numeric checks because of the need to * check values against maximum numeric values. * * This routine will return a line containing a ascii number between * 0 and BIG, or it will return NULL. * * If the stream is NULL then buf will be processed as if were * a single line stream. * * returns: * char * pointer to leading digit or + * NULL EOF or error */ char * read_num_buf(input, buf) FILE *input; /* input stream or NULL */ char *buf; /* input buffer */ { static char limit[MAX_LINE+1]; /* ascii value of BIG */ static int limit_len; /* digit count of limit */ int len; /* digits in input (excluding +/-) */ char *s; /* line start marker */ char *d; /* first digit, skip +/- */ char *p; /* scan pointer */ char *z; /* zero scan pointer */ /* form the ascii value of BIG if needed */ if (!isascii(limit[0]) || !isdigit(limit[0])) { sprintf(limit, "%lu", BIG); limit_len = strlen(limit); } /* * the search for a good line */ if (input != NULL && fgets(buf, MAX_LINE, input) == NULL) { /* error or EOF */ return NULL; } do { /* ignore leading whitespace */ for (s=buf; *s && s < buf+MAX_LINE; ++s) { if (!isascii(*s) || !isspace(*s)) { break; } } /* object if - */ if (*s == '-') { fprintf(stderr, "%s: ouch for minuses\n", program); continue; } /* skip over any leading + */ if (*s == '+') { d = s+1; } else { d = s; } /* note leading zeros */ for (z=d; *z && z < buf+MAX_LINE; ++z) { if (*z != '0') { break; } } /* scan for the first non-digit/non-plus/non-minus */ for (p=d; *p && p < buf+MAX_LINE; ++p) { if (!isascii(*p) || !isdigit(*p)) { break; } } /* ignore empty lines */ if (p == d) { continue; } *p = '\0'; /* object if too many digits */ len = strlen(z); len = (len<=0) ? 1 : len; /* accept if digit count is below limit */ if (len < limit_len) { /* we have good input */ return s; /* reject very large numbers */ } else if (len > limit_len) { fprintf(stderr, "%s: %s too big\n", program, z); continue; /* carefully check against near limit numbers */ } else if (strcmp(z, limit) > 0) { fprintf(stderr, "%s: %s a bit too big\n", program, z); continue; } /* number is near limit, but is under it */ return s; } while (input != NULL && fgets(buf, MAX_LINE, input) != NULL); /* error or EOF */ return NULL; } /* * primes - sieve and print primes from start up to and but not including stop */ void primes(start, stop) ubig start; /* where to start generating */ ubig stop; /* don't generate at or above this value */ { register char *q; /* sieve spot */ register ubig factor; /* index and factor */ register char *tab_lim; /* the limit to sieve on the table */ register ubig *p; /* prime table pointer */ register ubig fact_lim; /* highest prime for current block */ /* * NetBSD has no problems with handling conversion * between doubles and unsigned long, so we can go * all the way to BIG. */ if (start < 3) { start = (ubig)2; } if (stop < 3) { stop = (ubig)2; } if (stop <= start) { return; } /* * be sure that the values are odd, or 2 */ if (start != 2 && (start&0x1) == 0) { ++start; } if (stop != 2 && (stop&0x1) == 0) { ++stop; } /* * quick list of primes <= pr_limit */ if (start <= *pr_limit) { /* skip primes up to the start value */ for (p = &prime[0], factor = prime[0]; factor < stop && p <= pr_limit; factor = *(++p)) { if (factor >= start) { printf("%u\n", factor); } } /* return early if we are done */ if (p <= pr_limit) { return; } start = *pr_limit+2; } /* * we shall sieve a bytemap window, note primes and move the window * upward until we pass the stop point */ while (start < stop) { /* * factor out 3, 5, 7, 11 and 13 */ /* initial pattern copy */ factor = (start%(2*3*5*7*11*13))/2; /* starting copy spot */ memcpy(table, &pattern[factor], pattern_size-factor); /* main block pattern copies */ for (fact_lim=pattern_size-factor; fact_lim+pattern_size<=TABSIZE; fact_lim+=pattern_size) { memcpy(&table[fact_lim], pattern, pattern_size); } /* final block pattern copy */ memcpy(&table[fact_lim], pattern, TABSIZE-fact_lim); /* * sieve for primes 17 and higher */ /* note highest useful factor and sieve spot */ if (stop-start > TABSIZE+TABSIZE) { tab_lim = &table[TABSIZE]; /* sieve it all */ fact_lim = (int)sqrt( (double)(start)+TABSIZE+TABSIZE+1.0); } else { tab_lim = &table[(stop-start)/2]; /* partial sieve */ fact_lim = (int)sqrt((double)(stop)+1.0); } /* sieve for factors >= 17 */ factor = 17; /* 17 is first prime to use */ p = &prime[7]; /* 19 is next prime, pi(19)=7 */ do { /* determine the factor's initial sieve point */ q = (char *)(start%factor); /* temp storage for mod */ if ((int)q & 0x1) { q = &table[(factor-(int)q)/2]; } else { q = &table[q ? factor-((int)q/2) : 0]; } /* sive for our current factor */ for ( ; q < tab_lim; q += factor) { *q = '\0'; /* sieve out a spot */ } } while ((factor=(ubig)(*(p++))) <= fact_lim); /* * print generated primes */ for (q = table; q < tab_lim; ++q, start+=2) { if (*q) { printf("%u\n", start); } } } }