/* ldid - (Mach-O) Link-Loader Identity Editor * Copyright (C) 2007-2012 Jay Freeman (saurik) */ /* GNU Affero General Public License, Version 3 {{{ */ /* * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU Affero General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU Affero General Public License for more details. * You should have received a copy of the GNU Affero General Public License * along with this program. If not, see <http://www.gnu.org/licenses/>. **/ /* }}} */ #include "minimal/stdlib.h" #include "minimal/string.h" #include "minimal/mapping.h" #include "sha1.h" #include <cstring> #include <string> #include <vector> #include <sys/wait.h> #include <sys/types.h> #include <sys/stat.h> struct fat_header { uint32_t magic; uint32_t nfat_arch; } _packed; #define FAT_MAGIC 0xcafebabe #define FAT_CIGAM 0xbebafeca struct fat_arch { uint32_t cputype; uint32_t cpusubtype; uint32_t offset; uint32_t size; uint32_t align; } _packed; struct mach_header { uint32_t magic; uint32_t cputype; uint32_t cpusubtype; uint32_t filetype; uint32_t ncmds; uint32_t sizeofcmds; uint32_t flags; } _packed; #define MH_MAGIC 0xfeedface #define MH_CIGAM 0xcefaedfe #define MH_MAGIC_64 0xfeedfacf #define MH_CIGAM_64 0xcffaedfe #define MH_DYLDLINK 0x4 #define MH_OBJECT 0x1 #define MH_EXECUTE 0x2 #define MH_DYLIB 0x6 #define MH_BUNDLE 0x8 #define MH_DYLIB_STUB 0x9 struct load_command { uint32_t cmd; uint32_t cmdsize; } _packed; #define LC_REQ_DYLD uint32_t(0x80000000) #define LC_SEGMENT uint32_t(0x01) #define LC_SYMTAB uint32_t(0x02) #define LC_DYSYMTAB uint32_t(0x0b) #define LC_LOAD_DYLIB uint32_t(0x0c) #define LC_ID_DYLIB uint32_t(0x0d) #define LC_SEGMENT_64 uint32_t(0x19) #define LC_UUID uint32_t(0x1b) #define LC_CODE_SIGNATURE uint32_t(0x1d) #define LC_SEGMENT_SPLIT_INFO uint32_t(0x1e) #define LC_REEXPORT_DYLIB uint32_t(0x1f | LC_REQ_DYLD) #define LC_ENCRYPTION_INFO uint32_t(0x21) #define LC_DYLD_INFO uint32_t(0x22) #define LC_DYLD_INFO_ONLY uint32_t(0x22 | LC_REQ_DYLD) struct dylib { uint32_t name; uint32_t timestamp; uint32_t current_version; uint32_t compatibility_version; } _packed; struct dylib_command { uint32_t cmd; uint32_t cmdsize; struct dylib dylib; } _packed; struct uuid_command { uint32_t cmd; uint32_t cmdsize; uint8_t uuid[16]; } _packed; struct symtab_command { uint32_t cmd; uint32_t cmdsize; uint32_t symoff; uint32_t nsyms; uint32_t stroff; uint32_t strsize; } _packed; struct dyld_info_command { uint32_t cmd; uint32_t cmdsize; uint32_t rebase_off; uint32_t rebase_size; uint32_t bind_off; uint32_t bind_size; uint32_t weak_bind_off; uint32_t weak_bind_size; uint32_t lazy_bind_off; uint32_t lazy_bind_size; uint32_t export_off; uint32_t export_size; } _packed; struct dysymtab_command { uint32_t cmd; uint32_t cmdsize; uint32_t ilocalsym; uint32_t nlocalsym; uint32_t iextdefsym; uint32_t nextdefsym; uint32_t iundefsym; uint32_t nundefsym; uint32_t tocoff; uint32_t ntoc; uint32_t modtaboff; uint32_t nmodtab; uint32_t extrefsymoff; uint32_t nextrefsyms; uint32_t indirectsymoff; uint32_t nindirectsyms; uint32_t extreloff; uint32_t nextrel; uint32_t locreloff; uint32_t nlocrel; } _packed; struct dylib_table_of_contents { uint32_t symbol_index; uint32_t module_index; } _packed; struct dylib_module { uint32_t module_name; uint32_t iextdefsym; uint32_t nextdefsym; uint32_t irefsym; uint32_t nrefsym; uint32_t ilocalsym; uint32_t nlocalsym; uint32_t iextrel; uint32_t nextrel; uint32_t iinit_iterm; uint32_t ninit_nterm; uint32_t objc_module_info_addr; uint32_t objc_module_info_size; } _packed; struct dylib_reference { uint32_t isym:24; uint32_t flags:8; } _packed; struct relocation_info { int32_t r_address; uint32_t r_symbolnum:24; uint32_t r_pcrel:1; uint32_t r_length:2; uint32_t r_extern:1; uint32_t r_type:4; } _packed; struct nlist { union { char *n_name; int32_t n_strx; } n_un; uint8_t n_type; uint8_t n_sect; uint8_t n_desc; uint32_t n_value; } _packed; struct segment_command { uint32_t cmd; uint32_t cmdsize; char segname[16]; uint32_t vmaddr; uint32_t vmsize; uint32_t fileoff; uint32_t filesize; uint32_t maxprot; uint32_t initprot; uint32_t nsects; uint32_t flags; } _packed; struct segment_command_64 { uint32_t cmd; uint32_t cmdsize; char segname[16]; uint64_t vmaddr; uint64_t vmsize; uint64_t fileoff; uint64_t filesize; uint32_t maxprot; uint32_t initprot; uint32_t nsects; uint32_t flags; } _packed; struct section { char sectname[16]; char segname[16]; uint32_t addr; uint32_t size; uint32_t offset; uint32_t align; uint32_t reloff; uint32_t nreloc; uint32_t flags; uint32_t reserved1; uint32_t reserved2; } _packed; struct section_64 { char sectname[16]; char segname[16]; uint64_t addr; uint64_t size; uint32_t offset; uint32_t align; uint32_t reloff; uint32_t nreloc; uint32_t flags; uint32_t reserved1; uint32_t reserved2; } _packed; struct linkedit_data_command { uint32_t cmd; uint32_t cmdsize; uint32_t dataoff; uint32_t datasize; } _packed; struct encryption_info_command { uint32_t cmd; uint32_t cmdsize; uint32_t cryptoff; uint32_t cryptsize; uint32_t cryptid; } _packed; #define BIND_OPCODE_MASK 0xf0 #define BIND_IMMEDIATE_MASK 0x0f #define BIND_OPCODE_DONE 0x00 #define BIND_OPCODE_SET_DYLIB_ORDINAL_IMM 0x10 #define BIND_OPCODE_SET_DYLIB_ORDINAL_ULEB 0x20 #define BIND_OPCODE_SET_DYLIB_SPECIAL_IMM 0x30 #define BIND_OPCODE_SET_SYMBOL_TRAILING_FLAGS_IMM 0x40 #define BIND_OPCODE_SET_TYPE_IMM 0x50 #define BIND_OPCODE_SET_ADDEND_SLEB 0x60 #define BIND_OPCODE_SET_SEGMENT_AND_OFFSET_ULEB 0x70 #define BIND_OPCODE_ADD_ADDR_ULEB 0x80 #define BIND_OPCODE_DO_BIND 0x90 #define BIND_OPCODE_DO_BIND_ADD_ADDR_ULEB 0xa0 #define BIND_OPCODE_DO_BIND_ADD_ADDR_IMM_SCALED 0xb0 #define BIND_OPCODE_DO_BIND_ULEB_TIMES_SKIPPING_ULEB 0xc0 uint16_t Swap_(uint16_t value) { return ((value >> 8) & 0x00ff) | ((value << 8) & 0xff00); } uint32_t Swap_(uint32_t value) { value = ((value >> 8) & 0x00ff00ff) | ((value << 8) & 0xff00ff00); value = ((value >> 16) & 0x0000ffff) | ((value << 16) & 0xffff0000); return value; } int16_t Swap_(int16_t value) { return Swap_(static_cast<uint16_t>(value)); } int32_t Swap_(int32_t value) { return Swap_(static_cast<uint32_t>(value)); } bool little_(true); uint16_t Swap(uint16_t value) { return little_ ? Swap_(value) : value; } uint32_t Swap(uint32_t value) { return little_ ? Swap_(value) : value; } int16_t Swap(int16_t value) { return Swap(static_cast<uint16_t>(value)); } int32_t Swap(int32_t value) { return Swap(static_cast<uint32_t>(value)); } template <typename Target_> class Pointer; class Data { private: void *base_; size_t size_; protected: bool swapped_; public: Data(void *base, size_t size) : base_(base), size_(size), swapped_(false) { } uint16_t Swap(uint16_t value) const { return swapped_ ? Swap_(value) : value; } uint32_t Swap(uint32_t value) const { return swapped_ ? Swap_(value) : value; } int16_t Swap(int16_t value) const { return Swap(static_cast<uint16_t>(value)); } int32_t Swap(int32_t value) const { return Swap(static_cast<uint32_t>(value)); } void *GetBase() const { return base_; } size_t GetSize() const { return size_; } }; class MachHeader : public Data { private: bool bits64_; struct mach_header *mach_header_; struct load_command *load_command_; public: MachHeader(void *base, size_t size) : Data(base, size) { mach_header_ = (mach_header *) base; switch (Swap(mach_header_->magic)) { case MH_CIGAM: swapped_ = !swapped_; case MH_MAGIC: bits64_ = false; break; case MH_CIGAM_64: swapped_ = !swapped_; case MH_MAGIC_64: bits64_ = true; break; default: _assert(false); } void *post = mach_header_ + 1; if (bits64_) post = (uint32_t *) post + 1; load_command_ = (struct load_command *) post; _assert( Swap(mach_header_->filetype) == MH_EXECUTE || Swap(mach_header_->filetype) == MH_DYLIB || Swap(mach_header_->filetype) == MH_BUNDLE ); } struct mach_header *operator ->() const { return mach_header_; } uint32_t GetCPUType() const { return Swap(mach_header_->cputype); } uint16_t GetCPUSubtype() const { return Swap(mach_header_->cpusubtype) & 0xff; } std::vector<struct load_command *> GetLoadCommands() const { std::vector<struct load_command *> load_commands; struct load_command *load_command = load_command_; for (uint32_t cmd = 0; cmd != Swap(mach_header_->ncmds); ++cmd) { load_commands.push_back(load_command); load_command = (struct load_command *) ((uint8_t *) load_command + Swap(load_command->cmdsize)); } return load_commands; } std::vector<segment_command *> GetSegments(const char *segment_name) const { std::vector<struct segment_command *> segment_commands; _foreach (load_command, GetLoadCommands()) { if (Swap(load_command->cmd) == LC_SEGMENT) { segment_command *segment_command = reinterpret_cast<struct segment_command *>(load_command); if (strncmp(segment_command->segname, segment_name, 16) == 0) segment_commands.push_back(segment_command); } } return segment_commands; } std::vector<segment_command_64 *> GetSegments64(const char *segment_name) { std::vector<struct segment_command_64 *> segment_commands; _foreach (load_command, GetLoadCommands()) { if (Swap(load_command->cmd) == LC_SEGMENT_64) { segment_command_64 *segment_command = reinterpret_cast<struct segment_command_64 *>(load_command); if (strncmp(segment_command->segname, segment_name, 16) == 0) segment_commands.push_back(segment_command); } } return segment_commands; } std::vector<section *> GetSections(const char *segment_name, const char *section_name) const { std::vector<section *> sections; _foreach (segment, GetSegments(segment_name)) { section *section = (struct section *) (segment + 1); uint32_t sect; for (sect = 0; sect != Swap(segment->nsects); ++sect) { if (strncmp(section->sectname, section_name, 16) == 0) sections.push_back(section); ++section; } } return sections; } template <typename Target_> Pointer<Target_> GetPointer(uint32_t address, const char *segment_name = NULL) const { load_command *load_command = (struct load_command *) (mach_header_ + 1); uint32_t cmd; for (cmd = 0; cmd != Swap(mach_header_->ncmds); ++cmd) { if (Swap(load_command->cmd) == LC_SEGMENT) { segment_command *segment_command = (struct segment_command *) load_command; if (segment_name != NULL && strncmp(segment_command->segname, segment_name, 16) != 0) goto next_command; section *sections = (struct section *) (segment_command + 1); uint32_t sect; for (sect = 0; sect != Swap(segment_command->nsects); ++sect) { section *section = §ions[sect]; //printf("%s %u %p %p %u\n", segment_command->segname, sect, address, section->addr, section->size); if (address >= Swap(section->addr) && address < Swap(section->addr) + Swap(section->size)) { //printf("0x%.8x %s\n", address, segment_command->segname); return Pointer<Target_>(this, reinterpret_cast<Target_ *>(address - Swap(section->addr) + Swap(section->offset) + (char *) mach_header_)); } } } next_command: load_command = (struct load_command *) ((char *) load_command + Swap(load_command->cmdsize)); } return Pointer<Target_>(this); } template <typename Target_> Pointer<Target_> GetOffset(uint32_t offset) { return Pointer<Target_>(this, reinterpret_cast<Target_ *>(offset + (uint8_t *) mach_header_)); } }; class FatMachHeader : public MachHeader { private: fat_arch *fat_arch_; public: FatMachHeader(void *base, size_t size, fat_arch *fat_arch) : MachHeader(base, size), fat_arch_(fat_arch) { } fat_arch *GetFatArch() const { return fat_arch_; } }; class FatHeader : public Data { private: fat_header *fat_header_; std::vector<FatMachHeader> mach_headers_; public: FatHeader(void *base, size_t size) : Data(base, size) { fat_header_ = reinterpret_cast<struct fat_header *>(base); if (Swap(fat_header_->magic) == FAT_CIGAM) { swapped_ = !swapped_; goto fat; } else if (Swap(fat_header_->magic) != FAT_MAGIC) { fat_header_ = NULL; mach_headers_.push_back(FatMachHeader(base, size, NULL)); } else fat: { size_t fat_narch = Swap(fat_header_->nfat_arch); fat_arch *fat_arch = reinterpret_cast<struct fat_arch *>(fat_header_ + 1); size_t arch; for (arch = 0; arch != fat_narch; ++arch) { uint32_t arch_offset = Swap(fat_arch->offset); uint32_t arch_size = Swap(fat_arch->size); mach_headers_.push_back(FatMachHeader((uint8_t *) base + arch_offset, arch_size, fat_arch)); ++fat_arch; } } } std::vector<FatMachHeader> &GetMachHeaders() { return mach_headers_; } bool IsFat() const { return fat_header_ != NULL; } struct fat_header *operator ->() const { return fat_header_; } }; FatHeader Map(const char *path, bool ro = false) { size_t size; void *base(map(path, 0, _not(size_t), &size, ro)); return FatHeader(base, size); } template <typename Target_> class Pointer { private: const MachHeader *framework_; const Target_ *pointer_; public: Pointer(const MachHeader *framework = NULL, const Target_ *pointer = NULL) : framework_(framework), pointer_(pointer) { } operator const Target_ *() const { return pointer_; } const Target_ *operator ->() const { return pointer_; } Pointer<Target_> &operator ++() { ++pointer_; return *this; } template <typename Value_> Value_ Swap(Value_ value) { return framework_->Swap(value); } }; #define CSMAGIC_CODEDIRECTORY uint32_t(0xfade0c02) #define CSMAGIC_EMBEDDED_SIGNATURE uint32_t(0xfade0cc0) #define CSMAGIC_ENTITLEMENTS uint32_t(0xfade7171) #define CSSLOT_CODEDIRECTORY uint32_t(0) #define CSSLOT_REQUIREMENTS uint32_t(2) #define CSSLOT_ENTITLEMENTS uint32_t(5) struct BlobIndex { uint32_t type; uint32_t offset; } _packed; struct Blob { uint32_t magic; uint32_t length; } _packed; struct SuperBlob { struct Blob blob; uint32_t count; struct BlobIndex index[]; } _packed; struct CodeDirectory { struct Blob blob; uint32_t version; uint32_t flags; uint32_t hashOffset; uint32_t identOffset; uint32_t nSpecialSlots; uint32_t nCodeSlots; uint32_t codeLimit; uint8_t hashSize; uint8_t hashType; uint8_t spare1; uint8_t pageSize; uint32_t spare2; } _packed; extern "C" uint32_t hash(uint8_t *k, uint32_t length, uint32_t initval); void sha1(uint8_t *hash, uint8_t *data, size_t size) { SHA1Context context; SHA1Reset(&context); SHA1Input(&context, data, size); SHA1Result(&context, hash); } struct CodesignAllocation { uint32_t type_; uint16_t subtype_; size_t size_; CodesignAllocation(uint32_t type, uint16_t subtype, size_t size) : type_(type), subtype_(subtype), size_(size) { } }; int main(int argc, const char *argv[]) { union { uint16_t word; uint8_t byte[2]; } endian = {1}; little_ = endian.byte[0]; bool flag_R(false); bool flag_r(false); bool flag_t(false); bool flag_p(false); bool flag_u(false); bool flag_e(false); bool flag_T(false); bool flag_S(false); bool flag_s(false); bool flag_O(false); bool flag_D(false); bool flag_d(false); bool flag_A(false); bool flag_a(false); uint32_t flag_CPUType(_not(uint32_t)); uint32_t flag_CPUSubtype(_not(uint32_t)); bool timeh(false); uint32_t timev(0); const void *xmld(NULL); size_t xmls(0); uintptr_t noffset(_not(uintptr_t)); uintptr_t woffset(_not(uintptr_t)); std::vector<std::string> files; if (argc == 1) { fprintf(stderr, "usage: %s -S[entitlements.xml] <binary>\n", argv[0]); fprintf(stderr, " %s -e MobileSafari\n", argv[0]); fprintf(stderr, " %s -S cat\n", argv[0]); fprintf(stderr, " %s -Stfp.xml gdb\n", argv[0]); exit(0); } for (int argi(1); argi != argc; ++argi) if (argv[argi][0] != '-') files.push_back(argv[argi]); else switch (argv[argi][1]) { case 'R': flag_R = true; break; case 'r': flag_r = true; break; case 't': flag_t = true; break; case 'u': flag_u = true; break; case 'p': flag_p = true; break; case 'e': flag_e = true; break; case 'O': flag_O = true; break; case 'D': flag_D = true; break; case 'd': flag_d = true; break; case 'a': flag_a = true; break; case 'A': flag_A = true; if (argv[argi][2] != '\0') { const char *cpu = argv[argi] + 2; const char *colon = strchr(cpu, ':'); _assert(colon != NULL); char *arge; flag_CPUType = strtoul(cpu, &arge, 0); _assert(arge == colon); flag_CPUSubtype = strtoul(colon + 1, &arge, 0); _assert(arge == argv[argi] + strlen(argv[argi])); } break; case 's': _assert(!flag_S); flag_s = true; break; case 'S': _assert(!flag_s); flag_S = true; if (argv[argi][2] != '\0') { const char *xml = argv[argi] + 2; xmld = map(xml, 0, _not(size_t), &xmls, true); } break; case 'T': { flag_T = true; if (argv[argi][2] == '-') timeh = true; else { char *arge; timev = strtoul(argv[argi] + 2, &arge, 0); _assert(arge == argv[argi] + strlen(argv[argi])); } } break; case 'n': { char *arge; noffset = strtoul(argv[argi] + 2, &arge, 0); _assert(arge == argv[argi] + strlen(argv[argi])); } break; case 'w': { char *arge; woffset = strtoul(argv[argi] + 2, &arge, 0); _assert(arge == argv[argi] + strlen(argv[argi])); } break; default: goto usage; break; } if (files.empty()) usage: { exit(0); } size_t filei(0), filee(0); _foreach (file, files) try { const char *path(file.c_str()); const char *base = strrchr(path, '/'); char *temp(NULL), *dir; if (base != NULL) dir = strndup_(path, base++ - path + 1); else { dir = strdup(""); base = path; } if (flag_r) { uint32_t clip(0); { FatHeader fat_header(Map(path)); _foreach (mach_header, fat_header.GetMachHeaders()) { if (flag_A) { if (mach_header.GetCPUType() != flag_CPUType) continue; if (mach_header.GetCPUSubtype() != flag_CPUSubtype) continue; } mach_header->flags = mach_header.Swap(mach_header.Swap(mach_header->flags) | MH_DYLDLINK); uint32_t size(_not(uint32_t)); { _foreach (load_command, mach_header.GetLoadCommands()) { switch (mach_header.Swap(load_command->cmd)) { case LC_CODE_SIGNATURE: { struct linkedit_data_command *signature = reinterpret_cast<struct linkedit_data_command *>(load_command); memset(reinterpret_cast<uint8_t *>(mach_header.GetBase()) + mach_header.Swap(signature->dataoff), 0, mach_header.Swap(signature->datasize)); memset(signature, 0, sizeof(struct linkedit_data_command)); mach_header->ncmds = mach_header.Swap(mach_header.Swap(mach_header->ncmds) - 1); mach_header->sizeofcmds = mach_header.Swap(uint32_t(mach_header.Swap(mach_header->sizeofcmds) - sizeof(struct linkedit_data_command))); } break; case LC_SYMTAB: { struct symtab_command *symtab = reinterpret_cast<struct symtab_command *>(load_command); size = mach_header.Swap(symtab->stroff) + mach_header.Swap(symtab->strsize); } break; } } } _assert(size != _not(uint32_t)); _foreach (segment, const_cast<FatMachHeader &>(mach_header).GetSegments("__LINKEDIT")) { segment->filesize -= mach_header.GetSize() - size; if (fat_arch *fat_arch = mach_header.GetFatArch()) { fat_arch->size = fat_header.Swap(size); clip = std::max(clip, fat_header.Swap(fat_arch->offset) + size); } else clip = std::max(clip, size); } _foreach (segment, const_cast<FatMachHeader &>(mach_header).GetSegments64("__LINKEDIT")) { segment->filesize -= mach_header.GetSize() - size; if (fat_arch *fat_arch = mach_header.GetFatArch()) { fat_arch->size = fat_header.Swap(size); clip = std::max(clip, fat_header.Swap(fat_arch->offset) + size); } else clip = std::max(clip, size); } } } if (clip != 0) _syscall(truncate(path, clip)); } if (flag_S) { asprintf(&temp, "%s.%s.cs", dir, base); const char *allocate = getenv("CODESIGN_ALLOCATE"); if (allocate == NULL) allocate = "codesign_allocate"; std::vector<CodesignAllocation> allocations; { FatHeader fat_header(Map(path)); _foreach (mach_header, fat_header.GetMachHeaders()) { if (flag_A) { if (mach_header.GetCPUType() != flag_CPUType) continue; if (mach_header.GetCPUSubtype() != flag_CPUSubtype) continue; } mach_header->flags = mach_header.Swap(mach_header.Swap(mach_header->flags) | MH_DYLDLINK); size_t size(_not(size_t)); { _foreach (load_command, mach_header.GetLoadCommands()) { uint32_t cmd(mach_header.Swap(load_command->cmd)); if (cmd == LC_CODE_SIGNATURE) { struct linkedit_data_command *signature = reinterpret_cast<struct linkedit_data_command *>(load_command); size = mach_header.Swap(signature->dataoff); _assert(size < mach_header.GetSize()); break; } } if (size == _not(size_t)) size = mach_header.GetSize(); } allocations.push_back(CodesignAllocation(mach_header.GetCPUType(), mach_header.GetCPUSubtype(), size)); } } if (!allocations.empty()) { pid_t pid = fork(); _syscall(pid); if (pid == 0) { // XXX: this leaks memory, but it doesn't really matter std::vector<const char *> args; char *arg; args.push_back(allocate); args.push_back("-i"); args.push_back(path); _foreach (allocation, allocations) { args.push_back("-A"); asprintf(&arg, "%u", allocation.type_); args.push_back(arg); asprintf(&arg, "%u", allocation.subtype_); args.push_back(arg); size_t alloc(0); alloc += sizeof(struct SuperBlob); uint32_t special(0); special = std::max(special, CSSLOT_CODEDIRECTORY); alloc += sizeof(struct BlobIndex); alloc += sizeof(struct CodeDirectory); alloc += strlen(base) + 1; special = std::max(special, CSSLOT_REQUIREMENTS); alloc += sizeof(struct BlobIndex); alloc += 0xc; if (xmld != NULL) { special = std::max(special, CSSLOT_ENTITLEMENTS); alloc += sizeof(struct BlobIndex); alloc += sizeof(struct Blob); alloc += xmls; } size_t normal((allocation.size_ + 0x1000 - 1) / 0x1000); alloc += (special + normal) * 0x14; alloc += 15; alloc /= 16; alloc *= 16; asprintf(&arg, "%zu", alloc); args.push_back(arg); } args.push_back("-o"); args.push_back(temp); args.push_back(NULL); if (false) { printf("run:"); _foreach (arg, args) printf(" %s", arg); printf("\n"); } execvp(allocate, (char **) &args[0]); _assert(false); } int status; _syscall(waitpid(pid, &status, 0)); _assert(WIFEXITED(status)); _assert(WEXITSTATUS(status) == 0); } } if (flag_p) printf("path%zu='%s'\n", filei, file.c_str()); FatHeader fat_header(Map(temp == NULL ? path : temp, !(flag_R || flag_T || flag_s || flag_S || flag_O || flag_D))); struct linkedit_data_command *signature(NULL); _foreach (mach_header, fat_header.GetMachHeaders()) { if (flag_A) { if (mach_header.GetCPUType() != flag_CPUType) continue; if (mach_header.GetCPUSubtype() != flag_CPUSubtype) continue; } if (flag_a) printf("cpu=0x%x:0x%x\n", mach_header.GetCPUType(), mach_header.GetCPUSubtype()); if (flag_d) { if (struct fat_arch *fat_arch = mach_header.GetFatArch()) printf("offset=0x%x\n", Swap(fat_arch->offset)); else printf("offset=0x0\n"); } if (woffset != _not(uintptr_t)) { Pointer<uint32_t> wvalue(mach_header.GetPointer<uint32_t>(woffset)); if (wvalue == NULL) printf("(null) %p\n", reinterpret_cast<void *>(woffset)); else printf("0x%.08x\n", *wvalue); } if (noffset != _not(uintptr_t)) printf("%s\n", &*mach_header.GetPointer<char>(noffset)); if (flag_d) _foreach(segment, mach_header.GetSegments("__TEXT")) { printf("vmaddr=0x%x\n", mach_header.Swap(segment->vmaddr)); printf("fileoff=0x%x\n", mach_header.Swap(segment->fileoff)); } if (flag_O) { _foreach(section, mach_header.GetSections("__TEXT", "__text")) section->addr = mach_header.Swap(0); } _foreach (load_command, mach_header.GetLoadCommands()) { uint32_t cmd(mach_header.Swap(load_command->cmd)); if (flag_R && cmd == LC_REEXPORT_DYLIB) load_command->cmd = mach_header.Swap(LC_LOAD_DYLIB); else if (cmd == LC_CODE_SIGNATURE) signature = reinterpret_cast<struct linkedit_data_command *>(load_command); else if (cmd == LC_UUID) { volatile struct uuid_command *uuid_command(reinterpret_cast<struct uuid_command *>(load_command)); if (flag_u) { printf("uuid%zu=%.2x%.2x%.2x%.2x-%.2x%.2x-%.2x%.2x-%.2x%.2x-%.2x%.2x%.2x%.2x%.2x%.2x\n", filei, uuid_command->uuid[ 0], uuid_command->uuid[ 1], uuid_command->uuid[ 2], uuid_command->uuid[ 3], uuid_command->uuid[ 4], uuid_command->uuid[ 5], uuid_command->uuid[ 6], uuid_command->uuid[ 7], uuid_command->uuid[ 8], uuid_command->uuid[ 9], uuid_command->uuid[10], uuid_command->uuid[11], uuid_command->uuid[12], uuid_command->uuid[13], uuid_command->uuid[14], uuid_command->uuid[15] ); } } else if (cmd == LC_ID_DYLIB) { volatile struct dylib_command *dylib_command(reinterpret_cast<struct dylib_command *>(load_command)); if (flag_t) printf("time%zu=0x%.8x\n", filei, mach_header.Swap(dylib_command->dylib.timestamp)); if (flag_T) { uint32_t timed; if (!timeh) timed = timev; else { dylib_command->dylib.timestamp = 0; timed = hash(reinterpret_cast<uint8_t *>(mach_header.GetBase()), mach_header.GetSize(), timev); } dylib_command->dylib.timestamp = mach_header.Swap(timed); } } else if (cmd == LC_ENCRYPTION_INFO) { volatile struct encryption_info_command *encryption_info_command(reinterpret_cast<struct encryption_info_command *>(load_command)); if (flag_D) encryption_info_command->cryptid = mach_header.Swap(0); if (flag_d) { printf("cryptoff=0x%x\n", mach_header.Swap(encryption_info_command->cryptoff)); printf("cryptsize=0x%x\n", mach_header.Swap(encryption_info_command->cryptsize)); printf("cryptid=0x%x\n", mach_header.Swap(encryption_info_command->cryptid)); } } } if (flag_e) { _assert(signature != NULL); uint32_t data = mach_header.Swap(signature->dataoff); uint8_t *top = reinterpret_cast<uint8_t *>(mach_header.GetBase()); uint8_t *blob = top + data; struct SuperBlob *super = reinterpret_cast<struct SuperBlob *>(blob); for (size_t index(0); index != Swap(super->count); ++index) if (Swap(super->index[index].type) == CSSLOT_ENTITLEMENTS) { uint32_t begin = Swap(super->index[index].offset); struct Blob *entitlements = reinterpret_cast<struct Blob *>(blob + begin); fwrite(entitlements + 1, 1, Swap(entitlements->length) - sizeof(struct Blob), stdout); } } if (flag_s) { _assert(signature != NULL); uint32_t data = mach_header.Swap(signature->dataoff); uint8_t *top = reinterpret_cast<uint8_t *>(mach_header.GetBase()); uint8_t *blob = top + data; struct SuperBlob *super = reinterpret_cast<struct SuperBlob *>(blob); for (size_t index(0); index != Swap(super->count); ++index) if (Swap(super->index[index].type) == CSSLOT_CODEDIRECTORY) { uint32_t begin = Swap(super->index[index].offset); struct CodeDirectory *directory = reinterpret_cast<struct CodeDirectory *>(blob + begin); uint8_t (*hashes)[20] = reinterpret_cast<uint8_t (*)[20]>(blob + begin + Swap(directory->hashOffset)); uint32_t pages = Swap(directory->nCodeSlots); if (pages != 1) for (size_t i = 0; i != pages - 1; ++i) sha1(hashes[i], top + 0x1000 * i, 0x1000); if (pages != 0) sha1(hashes[pages - 1], top + 0x1000 * (pages - 1), ((data - 1) % 0x1000) + 1); } } if (flag_S) { _assert(signature != NULL); uint32_t data = mach_header.Swap(signature->dataoff); uint32_t size = mach_header.Swap(signature->datasize); uint8_t *top = reinterpret_cast<uint8_t *>(mach_header.GetBase()); uint8_t *blob = top + data; struct SuperBlob *super = reinterpret_cast<struct SuperBlob *>(blob); super->blob.magic = Swap(CSMAGIC_EMBEDDED_SIGNATURE); uint32_t count = xmld == NULL ? 2 : 3; uint32_t offset = sizeof(struct SuperBlob) + count * sizeof(struct BlobIndex); super->index[0].type = Swap(CSSLOT_CODEDIRECTORY); super->index[0].offset = Swap(offset); uint32_t begin = offset; struct CodeDirectory *directory = reinterpret_cast<struct CodeDirectory *>(blob + begin); offset += sizeof(struct CodeDirectory); directory->blob.magic = Swap(CSMAGIC_CODEDIRECTORY); directory->version = Swap(uint32_t(0x00020001)); directory->flags = Swap(uint32_t(0)); directory->codeLimit = Swap(data); directory->hashSize = 0x14; directory->hashType = 0x01; directory->spare1 = 0x00; directory->pageSize = 0x0c; directory->spare2 = Swap(uint32_t(0)); directory->identOffset = Swap(offset - begin); strcpy(reinterpret_cast<char *>(blob + offset), base); offset += strlen(base) + 1; uint32_t special = xmld == NULL ? CSSLOT_REQUIREMENTS : CSSLOT_ENTITLEMENTS; directory->nSpecialSlots = Swap(special); uint8_t (*hashes)[20] = reinterpret_cast<uint8_t (*)[20]>(blob + offset); memset(hashes, 0, sizeof(*hashes) * special); offset += sizeof(*hashes) * special; hashes += special; uint32_t pages = (data + 0x1000 - 1) / 0x1000; directory->nCodeSlots = Swap(pages); if (pages != 1) for (size_t i = 0; i != pages - 1; ++i) sha1(hashes[i], top + 0x1000 * i, 0x1000); if (pages != 0) sha1(hashes[pages - 1], top + 0x1000 * (pages - 1), ((data - 1) % 0x1000) + 1); directory->hashOffset = Swap(offset - begin); offset += sizeof(*hashes) * pages; directory->blob.length = Swap(offset - begin); super->index[1].type = Swap(CSSLOT_REQUIREMENTS); super->index[1].offset = Swap(offset); memcpy(blob + offset, "\xfa\xde\x0c\x01\x00\x00\x00\x0c\x00\x00\x00\x00", 0xc); offset += 0xc; if (xmld != NULL) { super->index[2].type = Swap(CSSLOT_ENTITLEMENTS); super->index[2].offset = Swap(offset); uint32_t begin = offset; struct Blob *entitlements = reinterpret_cast<struct Blob *>(blob + begin); offset += sizeof(struct Blob); memcpy(blob + offset, xmld, xmls); offset += xmls; entitlements->magic = Swap(CSMAGIC_ENTITLEMENTS); entitlements->length = Swap(offset - begin); } for (size_t index(0); index != count; ++index) { uint32_t type = Swap(super->index[index].type); if (type != 0 && type <= special) { uint32_t offset = Swap(super->index[index].offset); struct Blob *local = (struct Blob *) (blob + offset); sha1((uint8_t *) (hashes - type), (uint8_t *) local, Swap(local->length)); } } super->count = Swap(count); super->blob.length = Swap(offset); if (offset > size) { fprintf(stderr, "offset (%u) > size (%u)\n", offset, size); _assert(false); } //else fprintf(stderr, "offset (%zu) <= size (%zu)\n", offset, size); memset(blob + offset, 0, size - offset); } } if (flag_S) { uint8_t *top = reinterpret_cast<uint8_t *>(fat_header.GetBase()); size_t size = fat_header.GetSize(); char *copy; asprintf(©, "%s.%s.cp", dir, base); FILE *file = fopen(copy, "w+"); size_t writ = fwrite(top, 1, size, file); _assert(writ == size); fclose(file); _syscall(unlink(temp)); free(temp); temp = copy; } if (temp != NULL) { struct stat info; _syscall(stat(path, &info)); _syscall(chown(temp, info.st_uid, info.st_gid)); _syscall(chmod(temp, info.st_mode)); _syscall(unlink(path)); _syscall(rename(temp, path)); free(temp); } free(dir); ++filei; } catch (const char *) { ++filee; ++filei; } return filee; }