+Punctuation:
+.Bl -column -compact -offset indent "Input" "Rendered" "Description"
+.It Em Input Ta Em Rendered Ta Em Description
+.It \e(em Ta \(em Ta em-dash
+.It \e(en Ta \(en Ta en-dash
+.It \e(hy Ta \(hy Ta hyphen
+.It \ee Ta \e Ta back-slash
+.It \e. Ta \. Ta period
+.It \e(r! Ta \(r! Ta upside-down exclamation
+.It \e(r? Ta \(r? Ta upside-down question
+.El
+.Pp
+Quotes:
+.Bl -column -compact -offset indent "Input" "Rendered" "Description"
+.It Em Input Ta Em Rendered Ta Em Description
+.It \e(Bq Ta \(Bq Ta right low double-quote
+.It \e(bq Ta \(bq Ta right low single-quote
+.It \e(lq Ta \(lq Ta left double-quote
+.It \e(rq Ta \(rq Ta right double-quote
+.It \e(oq Ta \(oq Ta left single-quote
+.It \e(cq Ta \(cq Ta right single-quote
+.It \e(aq Ta \(aq Ta apostrophe quote (text)
+.It \e(dq Ta \(dq Ta double quote (text)
+.It \e(Fo Ta \(Fo Ta left guillemet
+.It \e(Fc Ta \(Fc Ta right guillemet
+.It \e(fo Ta \(fo Ta left single guillemet
+.It \e(fc Ta \(fc Ta right single guillemet
+.El
+.Pp
+Brackets:
+.Bl -column -compact -offset indent "xxbracketrightbpx" Rendered Description
+.It Em Input Ta Em Rendered Ta Em Description
+.It \e(lB Ta \(lB Ta left bracket
+.It \e(rB Ta \(rB Ta right bracket
+.It \e(lC Ta \(lC Ta left brace
+.It \e(rC Ta \(rC Ta right brace
+.It \e(la Ta \(la Ta left angle
+.It \e(ra Ta \(ra Ta right angle
+.It \e(bv Ta \(bv Ta brace extension
+.It \e[braceex] Ta \[braceex] Ta brace extension
+.It \e[bracketlefttp] Ta \[bracketlefttp] Ta top-left hooked bracket
+.It \e[bracketleftbp] Ta \[bracketleftbp] Ta bottom-left hooked bracket
+.It \e[bracketleftex] Ta \[bracketleftex] Ta left hooked bracket extension
+.It \e[bracketrighttp] Ta \[bracketrighttp] Ta top-right hooked bracket
+.It \e[bracketrightbp] Ta \[bracketrightbp] Ta bottom-right hooked bracket
+.It \e[bracketrightex] Ta \[bracketrightex] Ta right hooked bracket extension
+.It \e(lt Ta \(lt Ta top-left hooked brace
+.It \e[bracelefttp] Ta \[bracelefttp] Ta top-left hooked brace
+.It \e(lk Ta \(lk Ta mid-left hooked brace
+.It \e[braceleftmid] Ta \[braceleftmid] Ta mid-left hooked brace
+.It \e(lb Ta \(lb Ta bottom-left hooked brace
+.It \e[braceleftbp] Ta \[braceleftbp] Ta bottom-left hooked brace
+.It \e[braceleftex] Ta \[braceleftex] Ta left hooked brace extension
+.It \e(rt Ta \(rt Ta top-left hooked brace
+.It \e[bracerighttp] Ta \[bracerighttp] Ta top-right hooked brace
+.It \e(rk Ta \(rk Ta mid-right hooked brace
+.It \e[bracerightmid] Ta \[bracerightmid] Ta mid-right hooked brace
+.It \e(rb Ta \(rb Ta bottom-right hooked brace
+.It \e[bracerightbp] Ta \[bracerightbp] Ta bottom-right hooked brace
+.It \e[bracerightex] Ta \[bracerightex] Ta right hooked brace extension
+.It \e[parenlefttp] Ta \[parenlefttp] Ta top-left hooked parenthesis
+.It \e[parenleftbp] Ta \[parenleftbp] Ta bottom-left hooked parenthesis
+.It \e[parenleftex] Ta \[parenleftex] Ta left hooked parenthesis extension
+.It \e[parenrighttp] Ta \[parenrighttp] Ta top-right hooked parenthesis
+.It \e[parenrightbp] Ta \[parenrightbp] Ta bottom-right hooked parenthesis
+.It \e[parenrightex] Ta \[parenrightex] Ta right hooked parenthesis extension
+.El
+.Pp
+Arrows:
+.Bl -column -compact -offset indent "Input" "Rendered" "Description"
+.It Em Input Ta Em Rendered Ta Em Description
+.It \e(<- Ta \(<- Ta left arrow
+.It \e(-> Ta \(-> Ta right arrow
+.It \e(<> Ta \(<> Ta left-right arrow
+.It \e(da Ta \(da Ta down arrow
+.It \e(ua Ta \(ua Ta up arrow
+.It \e(va Ta \(va Ta up-down arrow
+.It \e(lA Ta \(lA Ta left double-arrow
+.It \e(rA Ta \(rA Ta right double-arrow
+.It \e(hA Ta \(hA Ta left-right double-arrow
+.It \e(uA Ta \(uA Ta up double-arrow
+.It \e(dA Ta \(dA Ta down double-arrow
+.It \e(vA Ta \(vA Ta up-down double-arrow
+.El
+.Pp
+Logical:
+.Bl -column -compact -offset indent "Input" "Rendered" "Description"
+.It Em Input Ta Em Rendered Ta Em Description
+.It \e(AN Ta \(AN Ta logical and
+.It \e(OR Ta \(OR Ta logical or
+.It \e(no Ta \(no Ta logical not
+.It \e[tno] Ta \[tno] Ta logical not (text)
+.It \e(te Ta \(te Ta existential quantifier
+.It \e(fa Ta \(fa Ta universal quantifier
+.It \e(st Ta \(st Ta such that
+.It \e(tf Ta \(tf Ta therefore
+.It \e(3d Ta \(3d Ta therefore
+.It \e(or Ta \(or Ta bitwise or