+.Bl -column -compact -offset indent "xxcoproductxx" "Rendered" "Description"
+.It Em Input Ta Em Rendered Ta Em Description
+.It \e(pl Ta \(pl Ta plus
+.It \e(mi Ta \(mi Ta minus
+.It \e- Ta \- Ta minus (text)
+.It \e(-+ Ta \(-+ Ta minus-plus
+.It \e(+- Ta \(+- Ta plus-minus
+.It \e[t+-] Ta \[t+-] Ta plus-minus (text)
+.It \e(pc Ta \(pc Ta centre-dot
+.It \e(mu Ta \(mu Ta multiply
+.It \e[tmu] Ta \[tmu] Ta multiply (text)
+.It \e(c* Ta \(c* Ta circle-multiply
+.It \e(c+ Ta \(c+ Ta circle-plus
+.It \e(di Ta \(di Ta divide
+.It \e[tdi] Ta \[tdi] Ta divide (text)
+.It \e(f/ Ta \(f/ Ta fraction
+.It \e(** Ta \(** Ta asterisk
+.It \e(<= Ta \(<= Ta less-than-equal
+.It \e(>= Ta \(>= Ta greater-than-equal
+.It \e(<< Ta \(<< Ta much less
+.It \e(>> Ta \(>> Ta much greater
+.It \e(eq Ta \(eq Ta equal
+.It \e(!= Ta \(!= Ta not equal
+.It \e(== Ta \(== Ta equivalent
+.It \e(ne Ta \(ne Ta not equivalent
+.It \e(=~ Ta \(=~ Ta congruent
+.It \e(-~ Ta \(-~ Ta asymptotically congruent
+.It \e(ap Ta \(ap Ta asymptotically similar
+.It \e(~~ Ta \(~~ Ta approximately similar
+.It \e(~= Ta \(~= Ta approximately equal
+.It \e(pt Ta \(pt Ta proportionate
+.It \e(es Ta \(es Ta empty set
+.It \e(mo Ta \(mo Ta element
+.It \e(nm Ta \(nm Ta not element
+.It \e(sb Ta \(sb Ta proper subset
+.It \e(nb Ta \(nb Ta not subset
+.It \e(sp Ta \(sp Ta proper superset
+.It \e(nc Ta \(nc Ta not superset
+.It \e(ib Ta \(ib Ta reflexive subset
+.It \e(ip Ta \(ip Ta reflexive superset
+.It \e(ca Ta \(ca Ta intersection
+.It \e(cu Ta \(cu Ta union
+.It \e(/_ Ta \(/_ Ta angle
+.It \e(pp Ta \(pp Ta perpendicular
+.It \e(is Ta \(is Ta integral
+.It \e[integral] Ta \[integral] Ta integral
+.It \e[sum] Ta \[sum] Ta summation
+.It \e[product] Ta \[product] Ta product
+.It \e[coproduct] Ta \[coproduct] Ta coproduct
+.It \e(gr Ta \(gr Ta gradient
+.It \e(sr Ta \(sr Ta square root
+.It \e[sqrt] Ta \[sqrt] Ta square root
+.It \e(lc Ta \(lc Ta left-ceiling
+.It \e(rc Ta \(rc Ta right-ceiling
+.It \e(lf Ta \(lf Ta left-floor
+.It \e(rf Ta \(rf Ta right-floor
+.It \e(if Ta \(if Ta infinity
+.It \e(Ah Ta \(Ah Ta aleph
+.It \e(Im Ta \(Im Ta imaginary
+.It \e(Re Ta \(Re Ta real
+.It \e(pd Ta \(pd Ta partial differential
+.It \e(-h Ta \(-h Ta Planck constant over 2\(*p