]> git.cameronkatri.com Git - bsdgames-darwin.git/blob - primes/primes.c
Add use of `const' where appropriate to the games.
[bsdgames-darwin.git] / primes / primes.c
1 /* $NetBSD: primes.c,v 1.9 1999/09/08 21:17:55 jsm Exp $ */
2
3 /*
4 * Copyright (c) 1989, 1993
5 * The Regents of the University of California. All rights reserved.
6 *
7 * This code is derived from software contributed to Berkeley by
8 * Landon Curt Noll.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the University of
21 * California, Berkeley and its contributors.
22 * 4. Neither the name of the University nor the names of its contributors
23 * may be used to endorse or promote products derived from this software
24 * without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36 * SUCH DAMAGE.
37 */
38
39 #include <sys/cdefs.h>
40 #ifndef lint
41 __COPYRIGHT("@(#) Copyright (c) 1989, 1993\n\
42 The Regents of the University of California. All rights reserved.\n");
43 #endif /* not lint */
44
45 #ifndef lint
46 #if 0
47 static char sccsid[] = "@(#)primes.c 8.5 (Berkeley) 5/10/95";
48 #else
49 __RCSID("$NetBSD: primes.c,v 1.9 1999/09/08 21:17:55 jsm Exp $");
50 #endif
51 #endif /* not lint */
52
53 /*
54 * primes - generate a table of primes between two values
55 *
56 * By: Landon Curt Noll chongo@toad.com, ...!{sun,tolsoft}!hoptoad!chongo
57 *
58 * chongo <for a good prime call: 391581 * 2^216193 - 1> /\oo/\
59 *
60 * usage:
61 * primes [start [stop]]
62 *
63 * Print primes >= start and < stop. If stop is omitted,
64 * the value 4294967295 (2^32-1) is assumed. If start is
65 * omitted, start is read from standard input.
66 *
67 * validation check: there are 664579 primes between 0 and 10^7
68 */
69
70 #include <ctype.h>
71 #include <err.h>
72 #include <errno.h>
73 #include <limits.h>
74 #include <math.h>
75 #include <memory.h>
76 #include <stdio.h>
77 #include <stdlib.h>
78 #include <unistd.h>
79
80 #include "primes.h"
81
82 /*
83 * Eratosthenes sieve table
84 *
85 * We only sieve the odd numbers. The base of our sieve windows are always
86 * odd. If the base of table is 1, table[i] represents 2*i-1. After the
87 * sieve, table[i] == 1 if and only iff 2*i-1 is prime.
88 *
89 * We make TABSIZE large to reduce the overhead of inner loop setup.
90 */
91 char table[TABSIZE]; /* Eratosthenes sieve of odd numbers */
92
93 /*
94 * prime[i] is the (i-1)th prime.
95 *
96 * We are able to sieve 2^32-1 because this byte table yields all primes
97 * up to 65537 and 65537^2 > 2^32-1.
98 */
99 extern const ubig prime[];
100 extern const ubig *pr_limit; /* largest prime in the prime array */
101
102 /*
103 * To avoid excessive sieves for small factors, we use the table below to
104 * setup our sieve blocks. Each element represents a odd number starting
105 * with 1. All non-zero elements are factors of 3, 5, 7, 11 and 13.
106 */
107 extern const char pattern[];
108 extern const int pattern_size; /* length of pattern array */
109
110 int main __P((int, char *[]));
111 void primes __P((ubig, ubig));
112 ubig read_num_buf __P((void));
113 void usage __P((void)) __attribute__((__noreturn__));
114
115 int
116 main(argc, argv)
117 int argc;
118 char *argv[];
119 {
120 ubig start; /* where to start generating */
121 ubig stop; /* don't generate at or above this value */
122 int ch;
123 char *p;
124
125 while ((ch = getopt(argc, argv, "")) != -1)
126 switch (ch) {
127 case '?':
128 default:
129 usage();
130 }
131 argc -= optind;
132 argv += optind;
133
134 start = 0;
135 stop = BIG;
136
137 /*
138 * Convert low and high args. Strtoul(3) sets errno to
139 * ERANGE if the number is too large, but, if there's
140 * a leading minus sign it returns the negation of the
141 * result of the conversion, which we'd rather disallow.
142 */
143 switch (argc) {
144 case 2:
145 /* Start and stop supplied on the command line. */
146 if (argv[0][0] == '-' || argv[1][0] == '-')
147 errx(1, "negative numbers aren't permitted.");
148
149 errno = 0;
150 start = strtoul(argv[0], &p, 10);
151 if (errno)
152 err(1, "%s", argv[0]);
153 if (*p != '\0')
154 errx(1, "%s: illegal numeric format.", argv[0]);
155
156 errno = 0;
157 stop = strtoul(argv[1], &p, 10);
158 if (errno)
159 err(1, "%s", argv[1]);
160 if (*p != '\0')
161 errx(1, "%s: illegal numeric format.", argv[1]);
162 break;
163 case 1:
164 /* Start on the command line. */
165 if (argv[0][0] == '-')
166 errx(1, "negative numbers aren't permitted.");
167
168 errno = 0;
169 start = strtoul(argv[0], &p, 10);
170 if (errno)
171 err(1, "%s", argv[0]);
172 if (*p != '\0')
173 errx(1, "%s: illegal numeric format.", argv[0]);
174 break;
175 case 0:
176 start = read_num_buf();
177 break;
178 default:
179 usage();
180 }
181
182 if (start > stop)
183 errx(1, "start value must be less than stop value.");
184 primes(start, stop);
185 exit(0);
186 }
187
188 /*
189 * read_num_buf --
190 * This routine returns a number n, where 0 <= n && n <= BIG.
191 */
192 ubig
193 read_num_buf()
194 {
195 ubig val;
196 char *p, buf[100]; /* > max number of digits. */
197
198 for (;;) {
199 if (fgets(buf, sizeof(buf), stdin) == NULL) {
200 if (ferror(stdin))
201 err(1, "stdin");
202 exit(0);
203 }
204 for (p = buf; isblank(*p); ++p);
205 if (*p == '\n' || *p == '\0')
206 continue;
207 if (*p == '-')
208 errx(1, "negative numbers aren't permitted.");
209 errno = 0;
210 val = strtoul(buf, &p, 10);
211 if (errno)
212 err(1, "%s", buf);
213 if (*p != '\n')
214 errx(1, "%s: illegal numeric format.", buf);
215 return (val);
216 }
217 }
218
219 /*
220 * primes - sieve and print primes from start up to and but not including stop
221 */
222 void
223 primes(start, stop)
224 ubig start; /* where to start generating */
225 ubig stop; /* don't generate at or above this value */
226 {
227 char *q; /* sieve spot */
228 ubig factor; /* index and factor */
229 char *tab_lim; /* the limit to sieve on the table */
230 const ubig *p; /* prime table pointer */
231 ubig fact_lim; /* highest prime for current block */
232
233 /*
234 * A number of systems can not convert double values into unsigned
235 * longs when the values are larger than the largest signed value.
236 * We don't have this problem, so we can go all the way to BIG.
237 */
238 if (start < 3) {
239 start = (ubig)2;
240 }
241 if (stop < 3) {
242 stop = (ubig)2;
243 }
244 if (stop <= start) {
245 return;
246 }
247
248 /*
249 * be sure that the values are odd, or 2
250 */
251 if (start != 2 && (start&0x1) == 0) {
252 ++start;
253 }
254 if (stop != 2 && (stop&0x1) == 0) {
255 ++stop;
256 }
257
258 /*
259 * quick list of primes <= pr_limit
260 */
261 if (start <= *pr_limit) {
262 /* skip primes up to the start value */
263 for (p = &prime[0], factor = prime[0];
264 factor < stop && p <= pr_limit; factor = *(++p)) {
265 if (factor >= start) {
266 printf("%lu\n", (unsigned long) factor);
267 }
268 }
269 /* return early if we are done */
270 if (p <= pr_limit) {
271 return;
272 }
273 start = *pr_limit+2;
274 }
275
276 /*
277 * we shall sieve a bytemap window, note primes and move the window
278 * upward until we pass the stop point
279 */
280 while (start < stop) {
281 /*
282 * factor out 3, 5, 7, 11 and 13
283 */
284 /* initial pattern copy */
285 factor = (start%(2*3*5*7*11*13))/2; /* starting copy spot */
286 memcpy(table, &pattern[factor], pattern_size-factor);
287 /* main block pattern copies */
288 for (fact_lim=pattern_size-factor;
289 fact_lim+pattern_size<=TABSIZE; fact_lim+=pattern_size) {
290 memcpy(&table[fact_lim], pattern, pattern_size);
291 }
292 /* final block pattern copy */
293 memcpy(&table[fact_lim], pattern, TABSIZE-fact_lim);
294
295 /*
296 * sieve for primes 17 and higher
297 */
298 /* note highest useful factor and sieve spot */
299 if (stop-start > TABSIZE+TABSIZE) {
300 tab_lim = &table[TABSIZE]; /* sieve it all */
301 fact_lim = (int)sqrt(
302 (double)(start)+TABSIZE+TABSIZE+1.0);
303 } else {
304 tab_lim = &table[(stop-start)/2]; /* partial sieve */
305 fact_lim = (int)sqrt((double)(stop)+1.0);
306 }
307 /* sieve for factors >= 17 */
308 factor = 17; /* 17 is first prime to use */
309 p = &prime[7]; /* 19 is next prime, pi(19)=7 */
310 do {
311 /* determine the factor's initial sieve point */
312 q = (char *)(start%factor); /* temp storage for mod */
313 if ((long)q & 0x1) {
314 q = &table[(factor-(long)q)/2];
315 } else {
316 q = &table[q ? factor-((long)q/2) : 0];
317 }
318 /* sive for our current factor */
319 for ( ; q < tab_lim; q += factor) {
320 *q = '\0'; /* sieve out a spot */
321 }
322 } while ((factor=(ubig)(*(p++))) <= fact_lim);
323
324 /*
325 * print generated primes
326 */
327 for (q = table; q < tab_lim; ++q, start+=2) {
328 if (*q) {
329 printf("%lu\n", (unsigned long) start);
330 }
331 }
332 }
333 }
334
335 void
336 usage()
337 {
338 (void)fprintf(stderr, "usage: primes [start [stop]]\n");
339 exit(1);
340 }