]> git.cameronkatri.com Git - bsdgames-darwin.git/blob - robots/auto.c
describe the algorithm better.
[bsdgames-darwin.git] / robots / auto.c
1 /* $NetBSD: auto.c,v 1.7 2004/08/27 09:06:25 christos Exp $ */
2
3 /*-
4 * Copyright (c) 1999 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Christos Zoulas.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*
40 * Automatic move.
41 * intelligent ?
42 * Algo :
43 * IF scrapheaps don't exist THEN
44 * IF not in danger THEN
45 * stay at current position
46 * ELSE
47 * move away from the closest robot
48 * FI
49 * ELSE
50 * find closest heap
51 * find closest robot
52 * IF scrapheap is adjacent THEN
53 * move behind the scrapheap
54 * ELSE
55 * take the move that takes you away from the
56 * robots and closest to the heap
57 * FI
58 * FI
59 */
60 #include "robots.h"
61
62 #define ABS(a) (((a)>0)?(a):-(a))
63 #define MIN(a,b) (((a)>(b))?(b):(a))
64 #define MAX(a,b) (((a)<(b))?(b):(a))
65
66 #define CONSDEBUG(a)
67
68 static int distance(int, int, int, int);
69 static int xinc(int);
70 static int yinc(int);
71 static const char *find_moves(void);
72 static COORD *closest_robot(int *);
73 static COORD *closest_heap(int *);
74 static char move_towards(int, int);
75 static char move_away(COORD *);
76 static char move_between(COORD *, COORD *);
77 static int between(COORD *, COORD *);
78
79 /* distance():
80 * return "move" number distance of the two coordinates
81 */
82 static int
83 distance(x1, y1, x2, y2)
84 int x1, y1, x2, y2;
85 {
86 return MAX(ABS(ABS(x1) - ABS(x2)), ABS(ABS(y1) - ABS(y2)));
87 } /* end distance */
88
89 /* xinc():
90 * Return x coordinate moves
91 */
92 static int
93 xinc(dir)
94 int dir;
95 {
96 switch(dir) {
97 case 'b':
98 case 'h':
99 case 'y':
100 return -1;
101 case 'l':
102 case 'n':
103 case 'u':
104 return 1;
105 case 'j':
106 case 'k':
107 default:
108 return 0;
109 }
110 }
111
112 /* yinc():
113 * Return y coordinate moves
114 */
115 static int
116 yinc(dir)
117 int dir;
118 {
119 switch(dir) {
120 case 'k':
121 case 'u':
122 case 'y':
123 return -1;
124 case 'b':
125 case 'j':
126 case 'n':
127 return 1;
128 case 'h':
129 case 'l':
130 default:
131 return 0;
132 }
133 }
134
135 /* find_moves():
136 * Find possible moves
137 */
138 static const char *
139 find_moves()
140 {
141 int x, y;
142 COORD test;
143 const char *m;
144 char *a;
145 static const char moves[] = ".hjklyubn";
146 static char ans[sizeof moves];
147 a = ans;
148
149 for(m = moves; *m; m++) {
150 test.x = My_pos.x + xinc(*m);
151 test.y = My_pos.y + yinc(*m);
152 move(test.y, test.x);
153 switch(winch(stdscr)) {
154 case ' ':
155 case PLAYER:
156 for(x = test.x - 1; x <= test.x + 1; x++) {
157 for(y = test.y - 1; y <= test.y + 1; y++) {
158 move(y, x);
159 if(winch(stdscr) == ROBOT)
160 goto bad;
161 }
162 }
163 *a++ = *m;
164 }
165 bad:;
166 }
167 *a = 0;
168 if(ans[0])
169 return ans;
170 else
171 return "t";
172 }
173
174 /* closest_robot():
175 * return the robot closest to us
176 * and put in dist its distance
177 */
178 static COORD *
179 closest_robot(dist)
180 int *dist;
181 {
182 COORD *rob, *end, *minrob = NULL;
183 int tdist, mindist;
184
185 mindist = 1000000;
186 end = &Robots[MAXROBOTS];
187 for (rob = Robots; rob < end; rob++) {
188 tdist = distance(My_pos.x, My_pos.y, rob->x, rob->y);
189 if (tdist < mindist) {
190 minrob = rob;
191 mindist = tdist;
192 }
193 }
194 *dist = mindist;
195 return minrob;
196 } /* end closest_robot */
197
198 /* closest_heap():
199 * return the heap closest to us
200 * and put in dist its distance
201 */
202 static COORD *
203 closest_heap(dist)
204 int *dist;
205 {
206 COORD *hp, *end, *minhp = NULL;
207 int mindist, tdist;
208
209 mindist = 1000000;
210 end = &Scrap[MAXROBOTS];
211 for (hp = Scrap; hp < end; hp++) {
212 if (hp->x == 0 && hp->y == 0)
213 break;
214 tdist = distance(My_pos.x, My_pos.y, hp->x, hp->y);
215 if (tdist < mindist) {
216 minhp = hp;
217 mindist = tdist;
218 }
219 }
220 *dist = mindist;
221 return minhp;
222 } /* end closest_heap */
223
224 /* move_towards():
225 * move as close to the given direction as possible
226 */
227 static char
228 move_towards(dx, dy)
229 int dx, dy;
230 {
231 char ok_moves[10], best_move;
232 char *ptr;
233 int move_judge, cur_judge, mvx, mvy;
234
235 (void)strcpy(ok_moves, find_moves());
236 best_move = ok_moves[0];
237 if (best_move != 't') {
238 mvx = xinc(best_move);
239 mvy = yinc(best_move);
240 move_judge = ABS(mvx - dx) + ABS(mvy - dy);
241 for (ptr = &ok_moves[1]; *ptr != '\0'; ptr++) {
242 mvx = xinc(*ptr);
243 mvy = yinc(*ptr);
244 cur_judge = ABS(mvx - dx) + ABS(mvy - dy);
245 if (cur_judge < move_judge) {
246 move_judge = cur_judge;
247 best_move = *ptr;
248 }
249 }
250 }
251 return best_move;
252 } /* end move_towards */
253
254 /* move_away():
255 * move away form the robot given
256 */
257 static char
258 move_away(rob)
259 COORD *rob;
260 {
261 int dx, dy;
262
263 dx = sign(My_pos.x - rob->x);
264 dy = sign(My_pos.y - rob->y);
265 return move_towards(dx, dy);
266 } /* end move_away */
267
268
269 /* move_between():
270 * move the closest heap between us and the closest robot
271 */
272 static char
273 move_between(rob, hp)
274 COORD *rob;
275 COORD *hp;
276 {
277 int dx, dy;
278 float slope, cons;
279
280 /* equation of the line between us and the closest robot */
281 if (My_pos.x == rob->x) {
282 /*
283 * me and the robot are aligned in x
284 * change my x so I get closer to the heap
285 * and my y far from the robot
286 */
287 dx = - sign(My_pos.x - hp->x);
288 dy = sign(My_pos.y - rob->y);
289 CONSDEBUG(("aligned in x"));
290 }
291 else if (My_pos.y == rob->y) {
292 /*
293 * me and the robot are aligned in y
294 * change my y so I get closer to the heap
295 * and my x far from the robot
296 */
297 dx = sign(My_pos.x - rob->x);
298 dy = -sign(My_pos.y - hp->y);
299 CONSDEBUG(("aligned in y"));
300 }
301 else {
302 CONSDEBUG(("no aligned"));
303 slope = (My_pos.y - rob->y) / (My_pos.x - rob->x);
304 cons = slope * rob->y;
305 if (ABS(My_pos.x - rob->x) > ABS(My_pos.y - rob->y)) {
306 /*
307 * we are closest to the robot in x
308 * move away from the robot in x and
309 * close to the scrap in y
310 */
311 dx = sign(My_pos.x - rob->x);
312 dy = sign(((slope * ((float) hp->x)) + cons) -
313 ((float) hp->y));
314 }
315 else {
316 dx = sign(((slope * ((float) hp->x)) + cons) -
317 ((float) hp->y));
318 dy = sign(My_pos.y - rob->y);
319 }
320 }
321 CONSDEBUG(("me (%d,%d) robot(%d,%d) heap(%d,%d) delta(%d,%d)",
322 My_pos.x, My_pos.y, rob->x, rob->y, hp->x, hp->y, dx, dy));
323 return move_towards(dx, dy);
324 } /* end move_between */
325
326 /* between():
327 * Return true if the heap is between us and the robot
328 */
329 int
330 between(rob, hp)
331 COORD *rob;
332 COORD *hp;
333 {
334 /* I = @ */
335 if (hp->x > rob->x && My_pos.x < rob->x)
336 return 0;
337 /* @ = I */
338 if (hp->x < rob->x && My_pos.x > rob->x)
339 return 0;
340 /* @ */
341 /* = */
342 /* I */
343 if (hp->y < rob->y && My_pos.y > rob->y)
344 return 0;
345 /* I */
346 /* = */
347 /* @ */
348 if (hp->y > rob->y && My_pos.y < rob->y)
349 return 0;
350 return 1;
351 } /* end between */
352
353 /* automove():
354 * find and do the best move if flag
355 * else get the first move;
356 */
357 char
358 automove()
359 {
360 #if 0
361 return find_moves()[0];
362 #else
363 COORD *robot_close;
364 COORD *heap_close;
365 int robot_dist, robot_heap, heap_dist;
366
367 robot_close = closest_robot(&robot_dist);
368 if (robot_dist > 1)
369 return('.');
370 if (!Num_scrap)
371 /* no scrap heaps just run away */
372 return move_away(robot_close);
373
374 heap_close = closest_heap(&heap_dist);
375 robot_heap = distance(robot_close->x, robot_close->y,
376 heap_close->x, heap_close->y);
377 if (robot_heap <= heap_dist && !between(robot_close, heap_close)) {
378 /*
379 * robot is closest to us from the heap. Run away!
380 */
381 return move_away(robot_close);
382 }
383
384 return move_between(robot_close, heap_close);
385 #endif
386 } /* end automove */