]> git.cameronkatri.com Git - bsdgames-darwin.git/blob - primes/primes.c
sprinkle static
[bsdgames-darwin.git] / primes / primes.c
1 /* $NetBSD: primes.c,v 1.17 2009/08/12 08:25:27 dholland Exp $ */
2
3 /*
4 * Copyright (c) 1989, 1993
5 * The Regents of the University of California. All rights reserved.
6 *
7 * This code is derived from software contributed to Berkeley by
8 * Landon Curt Noll.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. Neither the name of the University nor the names of its contributors
19 * may be used to endorse or promote products derived from this software
20 * without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
33 */
34
35 #include <sys/cdefs.h>
36 #ifndef lint
37 __COPYRIGHT("@(#) Copyright (c) 1989, 1993\
38 The Regents of the University of California. All rights reserved.");
39 #endif /* not lint */
40
41 #ifndef lint
42 #if 0
43 static char sccsid[] = "@(#)primes.c 8.5 (Berkeley) 5/10/95";
44 #else
45 __RCSID("$NetBSD: primes.c,v 1.17 2009/08/12 08:25:27 dholland Exp $");
46 #endif
47 #endif /* not lint */
48
49 /*
50 * primes - generate a table of primes between two values
51 *
52 * By: Landon Curt Noll chongo@toad.com, ...!{sun,tolsoft}!hoptoad!chongo
53 *
54 * chongo <for a good prime call: 391581 * 2^216193 - 1> /\oo/\
55 *
56 * usage:
57 * primes [start [stop]]
58 *
59 * Print primes >= start and < stop. If stop is omitted,
60 * the value 4294967295 (2^32-1) is assumed. If start is
61 * omitted, start is read from standard input.
62 *
63 * validation check: there are 664579 primes between 0 and 10^7
64 */
65
66 #include <ctype.h>
67 #include <err.h>
68 #include <errno.h>
69 #include <limits.h>
70 #include <math.h>
71 #include <memory.h>
72 #include <stdio.h>
73 #include <stdlib.h>
74 #include <unistd.h>
75
76 #include "primes.h"
77
78 /*
79 * Eratosthenes sieve table
80 *
81 * We only sieve the odd numbers. The base of our sieve windows are always
82 * odd. If the base of table is 1, table[i] represents 2*i-1. After the
83 * sieve, table[i] == 1 if and only iff 2*i-1 is prime.
84 *
85 * We make TABSIZE large to reduce the overhead of inner loop setup.
86 */
87 static char table[TABSIZE]; /* Eratosthenes sieve of odd numbers */
88
89 /*
90 * prime[i] is the (i-1)th prime.
91 *
92 * We are able to sieve 2^32-1 because this byte table yields all primes
93 * up to 65537 and 65537^2 > 2^32-1.
94 */
95 extern const ubig prime[];
96 extern const ubig *pr_limit; /* largest prime in the prime array */
97
98 /*
99 * To avoid excessive sieves for small factors, we use the table below to
100 * setup our sieve blocks. Each element represents a odd number starting
101 * with 1. All non-zero elements are factors of 3, 5, 7, 11 and 13.
102 */
103 extern const char pattern[];
104 extern const int pattern_size; /* length of pattern array */
105
106 static int dflag;
107
108 static void primes(ubig, ubig);
109 static ubig read_num_buf(void);
110 static void usage(void) __dead;
111
112 int
113 main(int argc, char *argv[])
114 {
115 ubig start; /* where to start generating */
116 ubig stop; /* don't generate at or above this value */
117 int ch;
118 char *p;
119
120 while ((ch = getopt(argc, argv, "d")) != -1)
121 switch (ch) {
122 case 'd':
123 dflag++;
124 break;
125 case '?':
126 default:
127 usage();
128 }
129 argc -= optind;
130 argv += optind;
131
132 start = 0;
133 stop = BIG;
134
135 /*
136 * Convert low and high args. Strtoul(3) sets errno to
137 * ERANGE if the number is too large, but, if there's
138 * a leading minus sign it returns the negation of the
139 * result of the conversion, which we'd rather disallow.
140 */
141 switch (argc) {
142 case 2:
143 /* Start and stop supplied on the command line. */
144 if (argv[0][0] == '-' || argv[1][0] == '-')
145 errx(1, "negative numbers aren't permitted.");
146
147 errno = 0;
148 start = strtoul(argv[0], &p, 10);
149 if (errno)
150 err(1, "%s", argv[0]);
151 if (*p != '\0')
152 errx(1, "%s: illegal numeric format.", argv[0]);
153
154 errno = 0;
155 stop = strtoul(argv[1], &p, 10);
156 if (errno)
157 err(1, "%s", argv[1]);
158 if (*p != '\0')
159 errx(1, "%s: illegal numeric format.", argv[1]);
160 break;
161 case 1:
162 /* Start on the command line. */
163 if (argv[0][0] == '-')
164 errx(1, "negative numbers aren't permitted.");
165
166 errno = 0;
167 start = strtoul(argv[0], &p, 10);
168 if (errno)
169 err(1, "%s", argv[0]);
170 if (*p != '\0')
171 errx(1, "%s: illegal numeric format.", argv[0]);
172 break;
173 case 0:
174 start = read_num_buf();
175 break;
176 default:
177 usage();
178 }
179
180 if (start > stop)
181 errx(1, "start value must be less than stop value.");
182 primes(start, stop);
183 exit(0);
184 }
185
186 /*
187 * read_num_buf --
188 * This routine returns a number n, where 0 <= n && n <= BIG.
189 */
190 ubig
191 read_num_buf(void)
192 {
193 ubig val;
194 char *p, buf[100]; /* > max number of digits. */
195
196 for (;;) {
197 if (fgets(buf, sizeof(buf), stdin) == NULL) {
198 if (ferror(stdin))
199 err(1, "stdin");
200 exit(0);
201 }
202 for (p = buf; isblank(*p); ++p);
203 if (*p == '\n' || *p == '\0')
204 continue;
205 if (*p == '-')
206 errx(1, "negative numbers aren't permitted.");
207 errno = 0;
208 val = strtoul(buf, &p, 10);
209 if (errno)
210 err(1, "%s", buf);
211 if (*p != '\n')
212 errx(1, "%s: illegal numeric format.", buf);
213 return (val);
214 }
215 }
216
217 /*
218 * primes - sieve and print primes from start up to and but not including stop
219 *
220 * start where to start generating
221 * stop don't generate at or above this value
222 */
223 void
224 primes(ubig start, ubig stop)
225 {
226 char *q; /* sieve spot */
227 ubig factor; /* index and factor */
228 char *tab_lim; /* the limit to sieve on the table */
229 const ubig *p; /* prime table pointer */
230 ubig fact_lim; /* highest prime for current block */
231 ubig mod; /* temp storage for mod */
232 ubig prev = 0;
233
234 /*
235 * A number of systems can not convert double values into unsigned
236 * longs when the values are larger than the largest signed value.
237 * We don't have this problem, so we can go all the way to BIG.
238 */
239 if (start < 3) {
240 start = (ubig)2;
241 }
242 if (stop < 3) {
243 stop = (ubig)2;
244 }
245 if (stop <= start) {
246 return;
247 }
248
249 /*
250 * be sure that the values are odd, or 2
251 */
252 if (start != 2 && (start&0x1) == 0) {
253 ++start;
254 }
255 if (stop != 2 && (stop&0x1) == 0) {
256 ++stop;
257 }
258
259 /*
260 * quick list of primes <= pr_limit
261 */
262 if (start <= *pr_limit) {
263 /* skip primes up to the start value */
264 for (p = &prime[0], factor = prime[0];
265 factor < stop && p <= pr_limit; factor = *(++p)) {
266 if (factor >= start) {
267 printf("%lu", (unsigned long) factor);
268 if (dflag) {
269 printf(" (%lu)",
270 (unsigned long) factor - prev);
271 }
272 putchar('\n');
273 }
274 prev = factor;
275 }
276 /* return early if we are done */
277 if (p <= pr_limit) {
278 return;
279 }
280 start = *pr_limit+2;
281 }
282
283 /*
284 * we shall sieve a bytemap window, note primes and move the window
285 * upward until we pass the stop point
286 */
287 while (start < stop) {
288 /*
289 * factor out 3, 5, 7, 11 and 13
290 */
291 /* initial pattern copy */
292 factor = (start%(2*3*5*7*11*13))/2; /* starting copy spot */
293 memcpy(table, &pattern[factor], pattern_size-factor);
294 /* main block pattern copies */
295 for (fact_lim=pattern_size-factor;
296 fact_lim+pattern_size<=TABSIZE; fact_lim+=pattern_size) {
297 memcpy(&table[fact_lim], pattern, pattern_size);
298 }
299 /* final block pattern copy */
300 memcpy(&table[fact_lim], pattern, TABSIZE-fact_lim);
301
302 /*
303 * sieve for primes 17 and higher
304 */
305 /* note highest useful factor and sieve spot */
306 if (stop-start > TABSIZE+TABSIZE) {
307 tab_lim = &table[TABSIZE]; /* sieve it all */
308 fact_lim = (int)sqrt(
309 (double)(start)+TABSIZE+TABSIZE+1.0);
310 } else {
311 tab_lim = &table[(stop-start)/2]; /* partial sieve */
312 fact_lim = (int)sqrt((double)(stop)+1.0);
313 }
314 /* sieve for factors >= 17 */
315 factor = 17; /* 17 is first prime to use */
316 p = &prime[7]; /* 19 is next prime, pi(19)=7 */
317 do {
318 /* determine the factor's initial sieve point */
319 mod = start%factor;
320 if (mod & 0x1) {
321 q = &table[(factor-mod)/2];
322 } else {
323 q = &table[mod ? factor-(mod/2) : 0];
324 }
325 /* sieve for our current factor */
326 for ( ; q < tab_lim; q += factor) {
327 *q = '\0'; /* sieve out a spot */
328 }
329 } while ((factor=(ubig)(*(p++))) <= fact_lim);
330
331 /*
332 * print generated primes
333 */
334 for (q = table; q < tab_lim; ++q, start+=2) {
335 if (*q) {
336 printf("%lu", (unsigned long) start);
337 if (dflag) {
338 printf(" (%lu)",
339 (unsigned long) start - prev);
340 prev = start;
341 }
342 putchar('\n');
343 }
344 }
345 }
346 }
347
348 void
349 usage(void)
350 {
351 (void)fprintf(stderr, "usage: primes [-d] [start [stop]]\n");
352 exit(1);
353 }