]> git.cameronkatri.com Git - bsdgames-darwin.git/blob - primes/primes.c
convert __attribute__s to applicable cdefs.h macros
[bsdgames-darwin.git] / primes / primes.c
1 /* $NetBSD: primes.c,v 1.13 2007/12/15 19:44:42 perry Exp $ */
2
3 /*
4 * Copyright (c) 1989, 1993
5 * The Regents of the University of California. All rights reserved.
6 *
7 * This code is derived from software contributed to Berkeley by
8 * Landon Curt Noll.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. Neither the name of the University nor the names of its contributors
19 * may be used to endorse or promote products derived from this software
20 * without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
33 */
34
35 #include <sys/cdefs.h>
36 #ifndef lint
37 __COPYRIGHT("@(#) Copyright (c) 1989, 1993\n\
38 The Regents of the University of California. All rights reserved.\n");
39 #endif /* not lint */
40
41 #ifndef lint
42 #if 0
43 static char sccsid[] = "@(#)primes.c 8.5 (Berkeley) 5/10/95";
44 #else
45 __RCSID("$NetBSD: primes.c,v 1.13 2007/12/15 19:44:42 perry Exp $");
46 #endif
47 #endif /* not lint */
48
49 /*
50 * primes - generate a table of primes between two values
51 *
52 * By: Landon Curt Noll chongo@toad.com, ...!{sun,tolsoft}!hoptoad!chongo
53 *
54 * chongo <for a good prime call: 391581 * 2^216193 - 1> /\oo/\
55 *
56 * usage:
57 * primes [start [stop]]
58 *
59 * Print primes >= start and < stop. If stop is omitted,
60 * the value 4294967295 (2^32-1) is assumed. If start is
61 * omitted, start is read from standard input.
62 *
63 * validation check: there are 664579 primes between 0 and 10^7
64 */
65
66 #include <ctype.h>
67 #include <err.h>
68 #include <errno.h>
69 #include <limits.h>
70 #include <math.h>
71 #include <memory.h>
72 #include <stdio.h>
73 #include <stdlib.h>
74 #include <unistd.h>
75
76 #include "primes.h"
77
78 /*
79 * Eratosthenes sieve table
80 *
81 * We only sieve the odd numbers. The base of our sieve windows are always
82 * odd. If the base of table is 1, table[i] represents 2*i-1. After the
83 * sieve, table[i] == 1 if and only iff 2*i-1 is prime.
84 *
85 * We make TABSIZE large to reduce the overhead of inner loop setup.
86 */
87 char table[TABSIZE]; /* Eratosthenes sieve of odd numbers */
88
89 /*
90 * prime[i] is the (i-1)th prime.
91 *
92 * We are able to sieve 2^32-1 because this byte table yields all primes
93 * up to 65537 and 65537^2 > 2^32-1.
94 */
95 extern const ubig prime[];
96 extern const ubig *pr_limit; /* largest prime in the prime array */
97
98 /*
99 * To avoid excessive sieves for small factors, we use the table below to
100 * setup our sieve blocks. Each element represents a odd number starting
101 * with 1. All non-zero elements are factors of 3, 5, 7, 11 and 13.
102 */
103 extern const char pattern[];
104 extern const int pattern_size; /* length of pattern array */
105
106 int main(int, char *[]);
107 void primes(ubig, ubig);
108 ubig read_num_buf(void);
109 void usage(void) __dead;
110
111 int
112 main(argc, argv)
113 int argc;
114 char *argv[];
115 {
116 ubig start; /* where to start generating */
117 ubig stop; /* don't generate at or above this value */
118 int ch;
119 char *p;
120
121 while ((ch = getopt(argc, argv, "")) != -1)
122 switch (ch) {
123 case '?':
124 default:
125 usage();
126 }
127 argc -= optind;
128 argv += optind;
129
130 start = 0;
131 stop = BIG;
132
133 /*
134 * Convert low and high args. Strtoul(3) sets errno to
135 * ERANGE if the number is too large, but, if there's
136 * a leading minus sign it returns the negation of the
137 * result of the conversion, which we'd rather disallow.
138 */
139 switch (argc) {
140 case 2:
141 /* Start and stop supplied on the command line. */
142 if (argv[0][0] == '-' || argv[1][0] == '-')
143 errx(1, "negative numbers aren't permitted.");
144
145 errno = 0;
146 start = strtoul(argv[0], &p, 10);
147 if (errno)
148 err(1, "%s", argv[0]);
149 if (*p != '\0')
150 errx(1, "%s: illegal numeric format.", argv[0]);
151
152 errno = 0;
153 stop = strtoul(argv[1], &p, 10);
154 if (errno)
155 err(1, "%s", argv[1]);
156 if (*p != '\0')
157 errx(1, "%s: illegal numeric format.", argv[1]);
158 break;
159 case 1:
160 /* Start on the command line. */
161 if (argv[0][0] == '-')
162 errx(1, "negative numbers aren't permitted.");
163
164 errno = 0;
165 start = strtoul(argv[0], &p, 10);
166 if (errno)
167 err(1, "%s", argv[0]);
168 if (*p != '\0')
169 errx(1, "%s: illegal numeric format.", argv[0]);
170 break;
171 case 0:
172 start = read_num_buf();
173 break;
174 default:
175 usage();
176 }
177
178 if (start > stop)
179 errx(1, "start value must be less than stop value.");
180 primes(start, stop);
181 exit(0);
182 }
183
184 /*
185 * read_num_buf --
186 * This routine returns a number n, where 0 <= n && n <= BIG.
187 */
188 ubig
189 read_num_buf()
190 {
191 ubig val;
192 char *p, buf[100]; /* > max number of digits. */
193
194 for (;;) {
195 if (fgets(buf, sizeof(buf), stdin) == NULL) {
196 if (ferror(stdin))
197 err(1, "stdin");
198 exit(0);
199 }
200 for (p = buf; isblank(*p); ++p);
201 if (*p == '\n' || *p == '\0')
202 continue;
203 if (*p == '-')
204 errx(1, "negative numbers aren't permitted.");
205 errno = 0;
206 val = strtoul(buf, &p, 10);
207 if (errno)
208 err(1, "%s", buf);
209 if (*p != '\n')
210 errx(1, "%s: illegal numeric format.", buf);
211 return (val);
212 }
213 }
214
215 /*
216 * primes - sieve and print primes from start up to and but not including stop
217 */
218 void
219 primes(start, stop)
220 ubig start; /* where to start generating */
221 ubig stop; /* don't generate at or above this value */
222 {
223 char *q; /* sieve spot */
224 ubig factor; /* index and factor */
225 char *tab_lim; /* the limit to sieve on the table */
226 const ubig *p; /* prime table pointer */
227 ubig fact_lim; /* highest prime for current block */
228 ubig mod; /* temp storage for mod */
229
230 /*
231 * A number of systems can not convert double values into unsigned
232 * longs when the values are larger than the largest signed value.
233 * We don't have this problem, so we can go all the way to BIG.
234 */
235 if (start < 3) {
236 start = (ubig)2;
237 }
238 if (stop < 3) {
239 stop = (ubig)2;
240 }
241 if (stop <= start) {
242 return;
243 }
244
245 /*
246 * be sure that the values are odd, or 2
247 */
248 if (start != 2 && (start&0x1) == 0) {
249 ++start;
250 }
251 if (stop != 2 && (stop&0x1) == 0) {
252 ++stop;
253 }
254
255 /*
256 * quick list of primes <= pr_limit
257 */
258 if (start <= *pr_limit) {
259 /* skip primes up to the start value */
260 for (p = &prime[0], factor = prime[0];
261 factor < stop && p <= pr_limit; factor = *(++p)) {
262 if (factor >= start) {
263 printf("%lu\n", (unsigned long) factor);
264 }
265 }
266 /* return early if we are done */
267 if (p <= pr_limit) {
268 return;
269 }
270 start = *pr_limit+2;
271 }
272
273 /*
274 * we shall sieve a bytemap window, note primes and move the window
275 * upward until we pass the stop point
276 */
277 while (start < stop) {
278 /*
279 * factor out 3, 5, 7, 11 and 13
280 */
281 /* initial pattern copy */
282 factor = (start%(2*3*5*7*11*13))/2; /* starting copy spot */
283 memcpy(table, &pattern[factor], pattern_size-factor);
284 /* main block pattern copies */
285 for (fact_lim=pattern_size-factor;
286 fact_lim+pattern_size<=TABSIZE; fact_lim+=pattern_size) {
287 memcpy(&table[fact_lim], pattern, pattern_size);
288 }
289 /* final block pattern copy */
290 memcpy(&table[fact_lim], pattern, TABSIZE-fact_lim);
291
292 /*
293 * sieve for primes 17 and higher
294 */
295 /* note highest useful factor and sieve spot */
296 if (stop-start > TABSIZE+TABSIZE) {
297 tab_lim = &table[TABSIZE]; /* sieve it all */
298 fact_lim = (int)sqrt(
299 (double)(start)+TABSIZE+TABSIZE+1.0);
300 } else {
301 tab_lim = &table[(stop-start)/2]; /* partial sieve */
302 fact_lim = (int)sqrt((double)(stop)+1.0);
303 }
304 /* sieve for factors >= 17 */
305 factor = 17; /* 17 is first prime to use */
306 p = &prime[7]; /* 19 is next prime, pi(19)=7 */
307 do {
308 /* determine the factor's initial sieve point */
309 mod = start%factor;
310 if (mod & 0x1) {
311 q = &table[(factor-mod)/2];
312 } else {
313 q = &table[mod ? factor-(mod/2) : 0];
314 }
315 /* sive for our current factor */
316 for ( ; q < tab_lim; q += factor) {
317 *q = '\0'; /* sieve out a spot */
318 }
319 } while ((factor=(ubig)(*(p++))) <= fact_lim);
320
321 /*
322 * print generated primes
323 */
324 for (q = table; q < tab_lim; ++q, start+=2) {
325 if (*q) {
326 printf("%lu\n", (unsigned long) start);
327 }
328 }
329 }
330 }
331
332 void
333 usage()
334 {
335 (void)fprintf(stderr, "usage: primes [start [stop]]\n");
336 exit(1);
337 }