]>
git.cameronkatri.com Git - bsdgames-darwin.git/blob - gomoku/gomoku.h
1 /* $NetBSD: gomoku.h,v 1.20 2014/03/22 18:58:57 dholland Exp $ */
5 * The Regents of the University of California. All rights reserved.
7 * This code is derived from software contributed to Berkeley by
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. Neither the name of the University nor the names of its contributors
19 * may be used to endorse or promote products derived from this software
20 * without specific prior written permission.
22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * @(#)gomoku.h 8.2 (Berkeley) 5/3/95
37 #include <sys/types.h>
38 #include <sys/_endian.h>
41 /* board dimensions */
47 #define BAREA (BSZ2*BSZ1+1)
49 #define TRANSCRIPT_COL 46 /* necessarily == 2*BSZ4 */
51 /* interactive curses stuff */
52 #define BGOTO(y,x) move(BSZ - (y), 2 * (x) + 3)
54 /* frame dimensions (based on 5 in a row) */
57 #define FAREA (FSZ1*FSZ2 + FSZ2*FSZ2 + FSZ1*FSZ2 + FSZ2*FSZ2)
64 /* values for s_occ */
70 /* return values for makemove() */
98 #define PT(x,y) ((x) + BSZ1 * (y))
101 * A 'frame' is a group of five or six contiguous board locations.
102 * An open ended frame is one with spaces on both ends; otherwise, its closed.
103 * A 'combo' is a group of intersecting frames and consists of two numbers:
104 * 'A' is the number of moves to make the combo non-blockable.
105 * 'B' is the minimum number of moves needed to win once it can't be blocked.
106 * A 'force' is a combo that is one move away from being non-blockable
108 * Single frame combo values:
122 * The rule for combining two combos (<A1,B1> <A2,B2>)
123 * with V valid intersection points, is:
124 * A' = A1 + A2 - 2 - V
125 * B' = MIN(A1 + B1 - 1, A2 + B2 - 1)
126 * Each time a frame is added to the combo, the number of moves to complete
127 * the force is the number of moves needed to 'fill' the frame plus one at
128 * the intersection point. The number of moves to win is the number of moves
129 * to complete the best frame minus the last move to complete the force.
130 * Note that it doesn't make sense to combine a <1,x> with anything since
131 * it is already a force. Also, the frames have to be independent so a
132 * single move doesn't affect more than one frame making up the combo.
134 * Rules for comparing which of two combos (<A1,B1> <A2,B2>) is better:
135 * Both the same color:
136 * <A',B'> = (A1 < A2 || A1 == A2 && B1 <= B2) ? <A1,B1> : <A2,B2>
137 * We want to complete the force first, then the combo with the
138 * fewest moves to win.
139 * Different colors, <A1,B1> is the combo for the player with the next move:
140 * <A',B'> = A2 <= 1 && (A1 > 1 || A2 + B2 < A1 + B1) ? <A2,B2> : <A1,B1>
141 * We want to block only if we have to (i.e., if they are one move away
142 * from completing a force and we don't have a force that we can
143 * complete which takes fewer or the same number of moves to win).
148 #define MAXCOMBO 0x600
152 #if BYTE_ORDER == BIG_ENDIAN
153 u_char a
; /* # moves to complete force */
154 u_char b
; /* # moves to win */
156 #if BYTE_ORDER == LITTLE_ENDIAN
157 u_char b
; /* # moves to win */
158 u_char a
; /* # moves to complete force */
165 * This structure is used to record information about single frames (F) and
166 * combinations of two more frames (C).
167 * For combinations of two or more frames, there is an additional
168 * array of pointers to the frames of the combination which is sorted
169 * by the index into the frames[] array. This is used to prevent duplication
170 * since frame A combined with B is the same as B with A.
171 * struct combostr *c_sort[size c_nframes];
172 * The leaves of the tree (frames) are numbered 0 (bottom, leftmost)
173 * to c_nframes - 1 (top, right). This is stored in c_frameindex and
174 * c_dir if C_LOOP is set.
177 struct combostr
*c_next
; /* list of combos at the same level */
178 struct combostr
*c_prev
; /* list of combos at the same level */
179 struct combostr
*c_link
[2]; /* C:previous level or F:NULL */
180 union comboval c_linkv
[2]; /* C:combo value for link[0,1] */
181 union comboval c_combo
; /* C:combo value for this level */
182 u_short c_vertex
; /* C:intersection or F:frame head */
183 u_char c_nframes
; /* number of frames in the combo */
184 u_char c_dir
; /* C:loop frame or F:frame direction */
185 u_char c_flags
; /* C:combo flags */
186 u_char c_frameindex
; /* C:intersection frame index */
187 u_char c_framecnt
[2]; /* number of frames left to attach */
188 u_char c_emask
[2]; /* C:bit mask of completion spots for
189 * link[0] and link[1] */
190 u_char c_voff
[2]; /* C:vertex offset within frame */
193 /* flag values for c_flags */
194 #define C_OPEN_0 0x01 /* link[0] is an open ended frame */
195 #define C_OPEN_1 0x02 /* link[1] is an open ended frame */
196 #define C_LOOP 0x04 /* link[1] intersects previous frame */
197 #define C_MARK 0x08 /* indicates combo processed */
200 * This structure is used for recording the completion points of
201 * multi frame combos.
204 struct elist
*e_next
; /* list of completion points */
205 struct combostr
*e_combo
; /* the whole combo */
206 u_char e_off
; /* offset in frame of this empty spot */
207 u_char e_frameindex
; /* intersection frame index */
208 u_char e_framecnt
; /* number of frames left to attach */
209 u_char e_emask
; /* real value of the frame's emask */
210 union comboval e_fval
; /* frame combo value */
214 * One spot structure for each location on the board.
215 * A frame consists of the combination for the current spot plus the five spots
216 * 0: right, 1: right & down, 2: down, 3: down & left.
219 short s_occ
; /* color of occupant */
220 short s_wval
; /* weighted value */
221 int s_flags
; /* flags for graph walks */
222 struct combostr
*s_frame
[4]; /* level 1 combo for frame[dir] */
223 union comboval s_fval
[2][4]; /* combo value for [color][frame] */
224 union comboval s_combo
[2]; /* minimum combo value for BLK & WHT */
225 u_char s_level
[2]; /* number of frames in the min combo */
226 u_char s_nforce
[2]; /* number of <1,x> combos */
227 struct elist
*s_empty
; /* level n combo completion spots */
228 struct elist
*s_nempty
; /* level n+1 combo completion spots */
229 int dummy
[2]; /* XXX */
232 /* flag values for s_flags */
233 #define CFLAG 0x000001 /* frame is part of a combo */
234 #define CFLAGALL 0x00000F /* all frame directions marked */
235 #define IFLAG 0x000010 /* legal intersection point */
236 #define IFLAGALL 0x0000F0 /* any intersection points? */
237 #define FFLAG 0x000100 /* frame is part of a <1,x> combo */
238 #define FFLAGALL 0x000F00 /* all force frames */
239 #define MFLAG 0x001000 /* frame has already been seen */
240 #define MFLAGALL 0x00F000 /* all frames seen */
241 #define BFLAG 0x010000 /* frame intersects border or dead */
242 #define BFLAGALL 0x0F0000 /* all frames dead */
245 * This structure is used to store overlap information between frames.
247 struct overlap_info
{
248 int o_intersect
; /* intersection spot */
249 struct combostr
*o_fcombo
; /* the connecting combo */
250 u_char o_link
; /* which link to update (0 or 1) */
251 u_char o_off
; /* offset in frame of intersection */
252 u_char o_frameindex
; /* intersection frame index */
255 extern const char *letters
;
256 extern const char pdir
[];
258 extern const int dd
[4];
259 extern struct spotstr board
[BAREA
]; /* info for board */
260 extern struct combostr frames
[FAREA
]; /* storage for single frames */
261 extern struct combostr
*sortframes
[2]; /* sorted, non-empty frames */
262 extern u_char overlap
[FAREA
* FAREA
]; /* frame [a][b] overlap */
263 extern short intersect
[FAREA
* FAREA
]; /* frame [a][b] intersection */
264 extern int movelog
[BSZ
* BSZ
]; /* history of moves */
268 extern int interactive
;
269 extern const char *plyr
[];
273 void bdinit(struct spotstr
*);
275 int get_key(const char *allowedkeys
);
276 int get_line(char *, int);
277 void ask(const char *);
278 void dislog(const char *);
281 void bdisp_init(void);
285 void panic(const char *, ...) __printflike(1, 2) __dead
;
286 void debuglog(const char *, ...) __printflike(1, 2);
288 const char *stoc(int);
289 int ctos(const char *);
290 int makemove(int, int);
291 int list_eq(struct combostr
**, struct combostr
**, int);
292 void clearcombo(struct combostr
*, int);
293 void markcombo(struct combostr
*);