]> git.cameronkatri.com Git - bsdgames-darwin.git/blob - primes/spsp.c
avoid duplicating symbols in libterminfo.
[bsdgames-darwin.git] / primes / spsp.c
1 /* $NetBSD: spsp.c,v 1.2 2018/02/03 15:40:29 christos Exp $ */
2
3 /*-
4 * Copyright (c) 2014 Colin Percival
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 * SUCH DAMAGE.
27 */
28
29 #include <sys/cdefs.h>
30 #ifndef lint
31 __COPYRIGHT("@(#) Copyright (c) 1989, 1993\
32 The Regents of the University of California. All rights reserved.");
33 #endif /* not lint */
34
35 #ifndef lint
36 #if 0
37 static char sccsid[] = "@(#)primes.c 8.5 (Berkeley) 5/10/95";
38 #else
39 __RCSID("$NetBSD: spsp.c,v 1.2 2018/02/03 15:40:29 christos Exp $");
40 #endif
41 #endif /* not lint */
42
43 #include <assert.h>
44 #include <stddef.h>
45 #include <stdint.h>
46
47 #include "primes.h"
48
49 /* Return a * b % n, where 0 <= n. */
50 static uint64_t
51 mulmod(uint64_t a, uint64_t b, uint64_t n)
52 {
53 uint64_t x = 0;
54 uint64_t an = a % n;
55
56 while (b != 0) {
57 if (b & 1) {
58 x += an;
59 if ((x < an) || (x >= n))
60 x -= n;
61 }
62 if (an + an < an)
63 an = an + an - n;
64 else if (an + an >= n)
65 an = an + an - n;
66 else
67 an = an + an;
68
69 b >>= 1;
70 }
71
72 return (x);
73 }
74
75 /* Return a^r % n, where 0 < n. */
76 static uint64_t
77 powmod(uint64_t a, uint64_t r, uint64_t n)
78 {
79 uint64_t x = 1;
80
81 while (r != 0) {
82 if (r & 1)
83 x = mulmod(a, x, n);
84 a = mulmod(a, a, n);
85 r >>= 1;
86 }
87
88 return (x);
89 }
90
91 /* Return non-zero if n is a strong pseudoprime to base p. */
92 static int
93 spsp(uint64_t n, uint64_t p)
94 {
95 uint64_t x;
96 uint64_t r = n - 1;
97 int k = 0;
98
99 /* Compute n - 1 = 2^k * r. */
100 while ((r & 1) == 0) {
101 k++;
102 r >>= 1;
103 }
104
105 /* Compute x = p^r mod n. If x = 1, n is a p-spsp. */
106 x = powmod(p, r, n);
107 if (x == 1)
108 return (1);
109
110 /* Compute x^(2^i) for 0 <= i < n. If any are -1, n is a p-spsp. */
111 while (k > 0) {
112 if (x == n - 1)
113 return (1);
114 x = powmod(x, 2, n);
115 k--;
116 }
117
118 /* Not a p-spsp. */
119 return (0);
120 }
121
122 /* Test for primality using strong pseudoprime tests. */
123 int
124 isprime(uint64_t _n)
125 {
126 uint64_t n = _n;
127
128 /*
129 * Values from:
130 * C. Pomerance, J.L. Selfridge, and S.S. Wagstaff, Jr.,
131 * The pseudoprimes to 25 * 10^9, Math. Comp. 35(151):1003-1026, 1980.
132 */
133
134 /* No SPSPs to base 2 less than 2047. */
135 if (!spsp(n, 2))
136 return (0);
137 if (n < 2047ULL)
138 return (1);
139
140 /* No SPSPs to bases 2,3 less than 1373653. */
141 if (!spsp(n, 3))
142 return (0);
143 if (n < 1373653ULL)
144 return (1);
145
146 /* No SPSPs to bases 2,3,5 less than 25326001. */
147 if (!spsp(n, 5))
148 return (0);
149 if (n < 25326001ULL)
150 return (1);
151
152 /* No SPSPs to bases 2,3,5,7 less than 3215031751. */
153 if (!spsp(n, 7))
154 return (0);
155 if (n < 3215031751ULL)
156 return (1);
157
158 /*
159 * Values from:
160 * G. Jaeschke, On strong pseudoprimes to several bases,
161 * Math. Comp. 61(204):915-926, 1993.
162 */
163
164 /* No SPSPs to bases 2,3,5,7,11 less than 2152302898747. */
165 if (!spsp(n, 11))
166 return (0);
167 if (n < 2152302898747ULL)
168 return (1);
169
170 /* No SPSPs to bases 2,3,5,7,11,13 less than 3474749660383. */
171 if (!spsp(n, 13))
172 return (0);
173 if (n < 3474749660383ULL)
174 return (1);
175
176 /* No SPSPs to bases 2,3,5,7,11,13,17 less than 341550071728321. */
177 if (!spsp(n, 17))
178 return (0);
179 if (n < 341550071728321ULL)
180 return (1);
181
182 /* No SPSPs to bases 2,3,5,7,11,13,17,19 less than 341550071728321. */
183 if (!spsp(n, 19))
184 return (0);
185 if (n < 341550071728321ULL)
186 return (1);
187
188 /*
189 * Value from:
190 * Y. Jiang and Y. Deng, Strong pseudoprimes to the first eight prime
191 * bases, Math. Comp. 83(290):2915-2924, 2014.
192 */
193
194 /* No SPSPs to bases 2..23 less than 3825123056546413051. */
195 if (!spsp(n, 23))
196 return (0);
197 if (n < 3825123056546413051)
198 return (1);
199 /*
200 * Value from:
201 * J. Sorenson and J. Webster, Strong pseudoprimes to twelve prime
202 * bases, Math. Comp. 86(304):985-1003, 2017.
203 */
204
205 /* No SPSPs to bases 2..37 less than 318665857834031151167461. */
206 if (!spsp(n, 29))
207 return (0);
208 if (!spsp(n, 31))
209 return (0);
210 if (!spsp(n, 37))
211 return (0);
212
213 /* All 64-bit values are less than 318665857834031151167461. */
214 return (1);
215 }