]> git.cameronkatri.com Git - bsdgames-darwin.git/blob - robots/auto.c
Remove uses of __P.
[bsdgames-darwin.git] / robots / auto.c
1 /* $NetBSD: auto.c,v 1.6 2004/01/27 20:30:30 jsm Exp $ */
2
3 /*-
4 * Copyright (c) 1999 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Christos Zoulas.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*
40 * Automatic move.
41 * intelligent ?
42 * Algo :
43 * IF scrapheaps don't exist THEN
44 * IF not in danger THEN
45 * stay at current position;
46 * ELSE move away from the closest robot;
47 * FI
48 * ELSE
49 * find closest heap;
50 * find closest robot;
51 * IF scrapheap is adjacenHEN
52 * move behind the scrapheap
53 * ELSE
54 * move away from the closest robot
55 * FI
56 * ELSE
57 * take the move that takes you away from the
58 * robots and closest to the heap
59 * FI
60 * FI
61 */
62 #include "robots.h"
63
64 #define ABS(a) (((a)>0)?(a):-(a))
65 #define MIN(a,b) (((a)>(b))?(b):(a))
66 #define MAX(a,b) (((a)<(b))?(b):(a))
67
68 #define CONSDEBUG(a)
69
70 static int distance(int, int, int, int);
71 static int xinc(int);
72 static int yinc(int);
73 static const char *find_moves(void);
74 static COORD *closest_robot(int *);
75 static COORD *closest_heap(int *);
76 static char move_towards(int, int);
77 static char move_away(COORD *);
78 static char move_between(COORD *, COORD *);
79 static int between(COORD *, COORD *);
80
81 /* distance():
82 * return "move" number distance of the two coordinates
83 */
84 static int
85 distance(x1, y1, x2, y2)
86 int x1, y1, x2, y2;
87 {
88 return MAX(ABS(ABS(x1) - ABS(x2)), ABS(ABS(y1) - ABS(y2)));
89 } /* end distance */
90
91 /* xinc():
92 * Return x coordinate moves
93 */
94 static int
95 xinc(dir)
96 int dir;
97 {
98 switch(dir) {
99 case 'b':
100 case 'h':
101 case 'y':
102 return -1;
103 case 'l':
104 case 'n':
105 case 'u':
106 return 1;
107 case 'j':
108 case 'k':
109 default:
110 return 0;
111 }
112 }
113
114 /* yinc():
115 * Return y coordinate moves
116 */
117 static int
118 yinc(dir)
119 int dir;
120 {
121 switch(dir) {
122 case 'k':
123 case 'u':
124 case 'y':
125 return -1;
126 case 'b':
127 case 'j':
128 case 'n':
129 return 1;
130 case 'h':
131 case 'l':
132 default:
133 return 0;
134 }
135 }
136
137 /* find_moves():
138 * Find possible moves
139 */
140 static const char *
141 find_moves()
142 {
143 int x, y;
144 COORD test;
145 const char *m;
146 char *a;
147 static const char moves[] = ".hjklyubn";
148 static char ans[sizeof moves];
149 a = ans;
150
151 for(m = moves; *m; m++) {
152 test.x = My_pos.x + xinc(*m);
153 test.y = My_pos.y + yinc(*m);
154 move(test.y, test.x);
155 switch(winch(stdscr)) {
156 case ' ':
157 case PLAYER:
158 for(x = test.x - 1; x <= test.x + 1; x++) {
159 for(y = test.y - 1; y <= test.y + 1; y++) {
160 move(y, x);
161 if(winch(stdscr) == ROBOT)
162 goto bad;
163 }
164 }
165 *a++ = *m;
166 }
167 bad:;
168 }
169 *a = 0;
170 if(ans[0])
171 return ans;
172 else
173 return "t";
174 }
175
176 /* closest_robot():
177 * return the robot closest to us
178 * and put in dist its distance
179 */
180 static COORD *
181 closest_robot(dist)
182 int *dist;
183 {
184 COORD *rob, *end, *minrob = NULL;
185 int tdist, mindist;
186
187 mindist = 1000000;
188 end = &Robots[MAXROBOTS];
189 for (rob = Robots; rob < end; rob++) {
190 tdist = distance(My_pos.x, My_pos.y, rob->x, rob->y);
191 if (tdist < mindist) {
192 minrob = rob;
193 mindist = tdist;
194 }
195 }
196 *dist = mindist;
197 return minrob;
198 } /* end closest_robot */
199
200 /* closest_heap():
201 * return the heap closest to us
202 * and put in dist its distance
203 */
204 static COORD *
205 closest_heap(dist)
206 int *dist;
207 {
208 COORD *hp, *end, *minhp = NULL;
209 int mindist, tdist;
210
211 mindist = 1000000;
212 end = &Scrap[MAXROBOTS];
213 for (hp = Scrap; hp < end; hp++) {
214 if (hp->x == 0 && hp->y == 0)
215 break;
216 tdist = distance(My_pos.x, My_pos.y, hp->x, hp->y);
217 if (tdist < mindist) {
218 minhp = hp;
219 mindist = tdist;
220 }
221 }
222 *dist = mindist;
223 return minhp;
224 } /* end closest_heap */
225
226 /* move_towards():
227 * move as close to the given direction as possible
228 */
229 static char
230 move_towards(dx, dy)
231 int dx, dy;
232 {
233 char ok_moves[10], best_move;
234 char *ptr;
235 int move_judge, cur_judge, mvx, mvy;
236
237 (void)strcpy(ok_moves, find_moves());
238 best_move = ok_moves[0];
239 if (best_move != 't') {
240 mvx = xinc(best_move);
241 mvy = yinc(best_move);
242 move_judge = ABS(mvx - dx) + ABS(mvy - dy);
243 for (ptr = &ok_moves[1]; *ptr != '\0'; ptr++) {
244 mvx = xinc(*ptr);
245 mvy = yinc(*ptr);
246 cur_judge = ABS(mvx - dx) + ABS(mvy - dy);
247 if (cur_judge < move_judge) {
248 move_judge = cur_judge;
249 best_move = *ptr;
250 }
251 }
252 }
253 return best_move;
254 } /* end move_towards */
255
256 /* move_away():
257 * move away form the robot given
258 */
259 static char
260 move_away(rob)
261 COORD *rob;
262 {
263 int dx, dy;
264
265 dx = sign(My_pos.x - rob->x);
266 dy = sign(My_pos.y - rob->y);
267 return move_towards(dx, dy);
268 } /* end move_away */
269
270
271 /* move_between():
272 * move the closest heap between us and the closest robot
273 */
274 static char
275 move_between(rob, hp)
276 COORD *rob;
277 COORD *hp;
278 {
279 int dx, dy;
280 float slope, cons;
281
282 /* equation of the line between us and the closest robot */
283 if (My_pos.x == rob->x) {
284 /*
285 * me and the robot are aligned in x
286 * change my x so I get closer to the heap
287 * and my y far from the robot
288 */
289 dx = - sign(My_pos.x - hp->x);
290 dy = sign(My_pos.y - rob->y);
291 CONSDEBUG(("aligned in x"));
292 }
293 else if (My_pos.y == rob->y) {
294 /*
295 * me and the robot are aligned in y
296 * change my y so I get closer to the heap
297 * and my x far from the robot
298 */
299 dx = sign(My_pos.x - rob->x);
300 dy = -sign(My_pos.y - hp->y);
301 CONSDEBUG(("aligned in y"));
302 }
303 else {
304 CONSDEBUG(("no aligned"));
305 slope = (My_pos.y - rob->y) / (My_pos.x - rob->x);
306 cons = slope * rob->y;
307 if (ABS(My_pos.x - rob->x) > ABS(My_pos.y - rob->y)) {
308 /*
309 * we are closest to the robot in x
310 * move away from the robot in x and
311 * close to the scrap in y
312 */
313 dx = sign(My_pos.x - rob->x);
314 dy = sign(((slope * ((float) hp->x)) + cons) -
315 ((float) hp->y));
316 }
317 else {
318 dx = sign(((slope * ((float) hp->x)) + cons) -
319 ((float) hp->y));
320 dy = sign(My_pos.y - rob->y);
321 }
322 }
323 CONSDEBUG(("me (%d,%d) robot(%d,%d) heap(%d,%d) delta(%d,%d)",
324 My_pos.x, My_pos.y, rob->x, rob->y, hp->x, hp->y, dx, dy));
325 return move_towards(dx, dy);
326 } /* end move_between */
327
328 /* between():
329 * Return true if the heap is between us and the robot
330 */
331 int
332 between(rob, hp)
333 COORD *rob;
334 COORD *hp;
335 {
336 /* I = @ */
337 if (hp->x > rob->x && My_pos.x < rob->x)
338 return 0;
339 /* @ = I */
340 if (hp->x < rob->x && My_pos.x > rob->x)
341 return 0;
342 /* @ */
343 /* = */
344 /* I */
345 if (hp->y < rob->y && My_pos.y > rob->y)
346 return 0;
347 /* I */
348 /* = */
349 /* @ */
350 if (hp->y > rob->y && My_pos.y < rob->y)
351 return 0;
352 return 1;
353 } /* end between */
354
355 /* automove():
356 * find and do the best move if flag
357 * else get the first move;
358 */
359 char
360 automove()
361 {
362 #if 0
363 return find_moves()[0];
364 #else
365 COORD *robot_close;
366 COORD *heap_close;
367 int robot_dist, robot_heap, heap_dist;
368
369 robot_close = closest_robot(&robot_dist);
370 if (robot_dist > 1)
371 return('.');
372 if (!Num_scrap)
373 /* no scrap heaps just run away */
374 return move_away(robot_close);
375
376 heap_close = closest_heap(&heap_dist);
377 robot_heap = distance(robot_close->x, robot_close->y,
378 heap_close->x, heap_close->y);
379 if (robot_heap <= heap_dist && !between(robot_close, heap_close)) {
380 /*
381 * robot is closest to us from the heap. Run away!
382 */
383 return move_away(robot_close);
384 }
385
386 return move_between(robot_close, heap_close);
387 #endif
388 } /* end automove */