]> git.cameronkatri.com Git - mandoc.git/blob - apropos_db.c
Correct the expansion of -xbd5;
[mandoc.git] / apropos_db.c
1 /* $Id: apropos_db.c,v 1.28 2011/12/25 14:58:39 schwarze Exp $ */
2 /*
3 * Copyright (c) 2011 Kristaps Dzonsons <kristaps@bsd.lv>
4 * Copyright (c) 2011 Ingo Schwarze <schwarze@openbsd.org>
5 *
6 * Permission to use, copy, modify, and distribute this software for any
7 * purpose with or without fee is hereby granted, provided that the above
8 * copyright notice and this permission notice appear in all copies.
9 *
10 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
11 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
12 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
13 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
14 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
15 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
16 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
17 */
18 #ifdef HAVE_CONFIG_H
19 #include "config.h"
20 #endif
21
22 #include <assert.h>
23 #include <fcntl.h>
24 #include <regex.h>
25 #include <stdarg.h>
26 #include <stdint.h>
27 #include <stdlib.h>
28 #include <string.h>
29 #include <unistd.h>
30
31 #if defined(__linux__)
32 # include <endian.h>
33 # include <db_185.h>
34 #elif defined(__APPLE__)
35 # include <libkern/OSByteOrder.h>
36 # include <db.h>
37 #else
38 # include <db.h>
39 #endif
40
41 #include "mandocdb.h"
42 #include "apropos_db.h"
43 #include "mandoc.h"
44
45 struct rec {
46 struct res res; /* resulting record info */
47 /*
48 * Maintain a binary tree for checking the uniqueness of `rec'
49 * when adding elements to the results array.
50 * Since the results array is dynamic, use offset in the array
51 * instead of a pointer to the structure.
52 */
53 int lhs;
54 int rhs;
55 int matched; /* expression is true */
56 int *matches; /* partial truth evaluations */
57 };
58
59 struct expr {
60 int regex; /* is regex? */
61 int index; /* index in match array */
62 uint64_t mask; /* type-mask */
63 int and; /* is rhs of logical AND? */
64 char *v; /* search value */
65 regex_t re; /* compiled re, if regex */
66 struct expr *next; /* next in sequence */
67 struct expr *subexpr;
68 };
69
70 struct type {
71 uint64_t mask;
72 const char *name;
73 };
74
75 struct rectree {
76 struct rec *node; /* record array for dir tree */
77 int len; /* length of record array */
78 };
79
80 static const struct type types[] = {
81 { TYPE_An, "An" },
82 { TYPE_Ar, "Ar" },
83 { TYPE_At, "At" },
84 { TYPE_Bsx, "Bsx" },
85 { TYPE_Bx, "Bx" },
86 { TYPE_Cd, "Cd" },
87 { TYPE_Cm, "Cm" },
88 { TYPE_Dv, "Dv" },
89 { TYPE_Dx, "Dx" },
90 { TYPE_Em, "Em" },
91 { TYPE_Er, "Er" },
92 { TYPE_Ev, "Ev" },
93 { TYPE_Fa, "Fa" },
94 { TYPE_Fl, "Fl" },
95 { TYPE_Fn, "Fn" },
96 { TYPE_Fn, "Fo" },
97 { TYPE_Ft, "Ft" },
98 { TYPE_Fx, "Fx" },
99 { TYPE_Ic, "Ic" },
100 { TYPE_In, "In" },
101 { TYPE_Lb, "Lb" },
102 { TYPE_Li, "Li" },
103 { TYPE_Lk, "Lk" },
104 { TYPE_Ms, "Ms" },
105 { TYPE_Mt, "Mt" },
106 { TYPE_Nd, "Nd" },
107 { TYPE_Nm, "Nm" },
108 { TYPE_Nx, "Nx" },
109 { TYPE_Ox, "Ox" },
110 { TYPE_Pa, "Pa" },
111 { TYPE_Rs, "Rs" },
112 { TYPE_Sh, "Sh" },
113 { TYPE_Ss, "Ss" },
114 { TYPE_St, "St" },
115 { TYPE_Sy, "Sy" },
116 { TYPE_Tn, "Tn" },
117 { TYPE_Va, "Va" },
118 { TYPE_Va, "Vt" },
119 { TYPE_Xr, "Xr" },
120 { UINT64_MAX, "any" },
121 { 0, NULL }
122 };
123
124 static DB *btree_open(void);
125 static int btree_read(const DBT *, const DBT *,
126 const struct mchars *,
127 uint64_t *, recno_t *, char **);
128 static int expreval(const struct expr *, int *);
129 static void exprexec(const struct expr *,
130 const char *, uint64_t, struct rec *);
131 static int exprmark(const struct expr *,
132 const char *, uint64_t, int *);
133 static struct expr *exprexpr(int, char *[], int *, int *, size_t *);
134 static struct expr *exprterm(char *, int);
135 static DB *index_open(void);
136 static int index_read(const DBT *, const DBT *, int,
137 const struct mchars *, struct rec *);
138 static void norm_string(const char *,
139 const struct mchars *, char **);
140 static size_t norm_utf8(unsigned int, char[7]);
141 static void recfree(struct rec *);
142 static int single_search(struct rectree *, const struct opts *,
143 const struct expr *, size_t terms,
144 struct mchars *, int);
145
146 /*
147 * Open the keyword mandoc-db database.
148 */
149 static DB *
150 btree_open(void)
151 {
152 BTREEINFO info;
153 DB *db;
154
155 memset(&info, 0, sizeof(BTREEINFO));
156 info.flags = R_DUP;
157
158 db = dbopen(MANDOC_DB, O_RDONLY, 0, DB_BTREE, &info);
159 if (NULL != db)
160 return(db);
161
162 return(NULL);
163 }
164
165 /*
166 * Read a keyword from the database and normalise it.
167 * Return 0 if the database is insane, else 1.
168 */
169 static int
170 btree_read(const DBT *k, const DBT *v, const struct mchars *mc,
171 uint64_t *mask, recno_t *rec, char **buf)
172 {
173 uint64_t vbuf[2];
174
175 /* Are our sizes sane? */
176 if (k->size < 2 || sizeof(vbuf) != v->size)
177 return(0);
178
179 /* Is our string nil-terminated? */
180 if ('\0' != ((const char *)k->data)[(int)k->size - 1])
181 return(0);
182
183 norm_string((const char *)k->data, mc, buf);
184 memcpy(vbuf, v->data, v->size);
185 *mask = betoh64(vbuf[0]);
186 *rec = betoh64(vbuf[1]);
187 return(1);
188 }
189
190 /*
191 * Take a Unicode codepoint and produce its UTF-8 encoding.
192 * This isn't the best way to do this, but it works.
193 * The magic numbers are from the UTF-8 packaging.
194 * They're not as scary as they seem: read the UTF-8 spec for details.
195 */
196 static size_t
197 norm_utf8(unsigned int cp, char out[7])
198 {
199 int rc;
200
201 rc = 0;
202
203 if (cp <= 0x0000007F) {
204 rc = 1;
205 out[0] = (char)cp;
206 } else if (cp <= 0x000007FF) {
207 rc = 2;
208 out[0] = (cp >> 6 & 31) | 192;
209 out[1] = (cp & 63) | 128;
210 } else if (cp <= 0x0000FFFF) {
211 rc = 3;
212 out[0] = (cp >> 12 & 15) | 224;
213 out[1] = (cp >> 6 & 63) | 128;
214 out[2] = (cp & 63) | 128;
215 } else if (cp <= 0x001FFFFF) {
216 rc = 4;
217 out[0] = (cp >> 18 & 7) | 240;
218 out[1] = (cp >> 12 & 63) | 128;
219 out[2] = (cp >> 6 & 63) | 128;
220 out[3] = (cp & 63) | 128;
221 } else if (cp <= 0x03FFFFFF) {
222 rc = 5;
223 out[0] = (cp >> 24 & 3) | 248;
224 out[1] = (cp >> 18 & 63) | 128;
225 out[2] = (cp >> 12 & 63) | 128;
226 out[3] = (cp >> 6 & 63) | 128;
227 out[4] = (cp & 63) | 128;
228 } else if (cp <= 0x7FFFFFFF) {
229 rc = 6;
230 out[0] = (cp >> 30 & 1) | 252;
231 out[1] = (cp >> 24 & 63) | 128;
232 out[2] = (cp >> 18 & 63) | 128;
233 out[3] = (cp >> 12 & 63) | 128;
234 out[4] = (cp >> 6 & 63) | 128;
235 out[5] = (cp & 63) | 128;
236 } else
237 return(0);
238
239 out[rc] = '\0';
240 return((size_t)rc);
241 }
242
243 /*
244 * Normalise strings from the index and database.
245 * These strings are escaped as defined by mandoc_char(7) along with
246 * other goop in mandoc.h (e.g., soft hyphens).
247 * This function normalises these into a nice UTF-8 string.
248 * Returns 0 if the database is fucked.
249 */
250 static void
251 norm_string(const char *val, const struct mchars *mc, char **buf)
252 {
253 size_t sz, bsz;
254 char utfbuf[7];
255 const char *seq, *cpp;
256 int len, u, pos;
257 enum mandoc_esc esc;
258 static const char res[] = { '\\', '\t',
259 ASCII_NBRSP, ASCII_HYPH, '\0' };
260
261 /* Pre-allocate by the length of the input */
262
263 bsz = strlen(val) + 1;
264 *buf = mandoc_realloc(*buf, bsz);
265 pos = 0;
266
267 while ('\0' != *val) {
268 /*
269 * Halt on the first escape sequence.
270 * This also halts on the end of string, in which case
271 * we just copy, fallthrough, and exit the loop.
272 */
273 if ((sz = strcspn(val, res)) > 0) {
274 memcpy(&(*buf)[pos], val, sz);
275 pos += (int)sz;
276 val += (int)sz;
277 }
278
279 if (ASCII_HYPH == *val) {
280 (*buf)[pos++] = '-';
281 val++;
282 continue;
283 } else if ('\t' == *val || ASCII_NBRSP == *val) {
284 (*buf)[pos++] = ' ';
285 val++;
286 continue;
287 } else if ('\\' != *val)
288 break;
289
290 /* Read past the slash. */
291
292 val++;
293 u = 0;
294
295 /*
296 * Parse the escape sequence and see if it's a
297 * predefined character or special character.
298 */
299
300 esc = mandoc_escape(&val, &seq, &len);
301 if (ESCAPE_ERROR == esc)
302 break;
303
304 /*
305 * XXX - this just does UTF-8, but we need to know
306 * beforehand whether we should do text substitution.
307 */
308
309 switch (esc) {
310 case (ESCAPE_SPECIAL):
311 if (0 != (u = mchars_spec2cp(mc, seq, len)))
312 break;
313 /* FALLTHROUGH */
314 default:
315 continue;
316 }
317
318 /*
319 * If we have a Unicode codepoint, try to convert that
320 * to a UTF-8 byte string.
321 */
322
323 cpp = utfbuf;
324 if (0 == (sz = norm_utf8(u, utfbuf)))
325 continue;
326
327 /* Copy the rendered glyph into the stream. */
328
329 sz = strlen(cpp);
330 bsz += sz;
331
332 *buf = mandoc_realloc(*buf, bsz);
333
334 memcpy(&(*buf)[pos], cpp, sz);
335 pos += (int)sz;
336 }
337
338 (*buf)[pos] = '\0';
339 }
340
341 /*
342 * Open the filename-index mandoc-db database.
343 * Returns NULL if opening failed.
344 */
345 static DB *
346 index_open(void)
347 {
348 DB *db;
349
350 db = dbopen(MANDOC_IDX, O_RDONLY, 0, DB_RECNO, NULL);
351 if (NULL != db)
352 return(db);
353
354 return(NULL);
355 }
356
357 /*
358 * Safely unpack from an index file record into the structure.
359 * Returns 1 if an entry was unpacked, 0 if the database is insane.
360 */
361 static int
362 index_read(const DBT *key, const DBT *val, int index,
363 const struct mchars *mc, struct rec *rec)
364 {
365 size_t left;
366 char *np, *cp;
367 char type;
368
369 #define INDEX_BREAD(_dst) \
370 do { \
371 if (NULL == (np = memchr(cp, '\0', left))) \
372 return(0); \
373 norm_string(cp, mc, &(_dst)); \
374 left -= (np - cp) + 1; \
375 cp = np + 1; \
376 } while (/* CONSTCOND */ 0)
377
378 if (0 == (left = val->size))
379 return(0);
380
381 cp = val->data;
382 assert(sizeof(recno_t) == key->size);
383 memcpy(&rec->res.rec, key->data, key->size);
384 rec->res.volume = index;
385
386 if ('d' == (type = *cp++))
387 rec->res.type = RESTYPE_MDOC;
388 else if ('a' == type)
389 rec->res.type = RESTYPE_MAN;
390 else if ('c' == type)
391 rec->res.type = RESTYPE_CAT;
392 else
393 return(0);
394
395 left--;
396 INDEX_BREAD(rec->res.file);
397 INDEX_BREAD(rec->res.cat);
398 INDEX_BREAD(rec->res.title);
399 INDEX_BREAD(rec->res.arch);
400 INDEX_BREAD(rec->res.desc);
401 return(1);
402 }
403
404 /*
405 * Search mandocdb databases in paths for expression "expr".
406 * Filter out by "opts".
407 * Call "res" with the results, which may be zero.
408 * Return 0 if there was a database error, else return 1.
409 */
410 int
411 apropos_search(int pathsz, char **paths, const struct opts *opts,
412 const struct expr *expr, size_t terms, void *arg,
413 void (*res)(struct res *, size_t, void *))
414 {
415 struct rectree tree;
416 struct mchars *mc;
417 struct res *ress;
418 int i, mlen, rc;
419
420 memset(&tree, 0, sizeof(struct rectree));
421
422 rc = 0;
423 mc = mchars_alloc();
424
425 /*
426 * Main loop. Change into the directory containing manpage
427 * databases. Run our expession over each database in the set.
428 */
429
430 for (i = 0; i < pathsz; i++) {
431 if (chdir(paths[i]))
432 continue;
433 if ( ! single_search(&tree, opts, expr, terms, mc, i))
434 goto out;
435 }
436
437 /*
438 * Count matching files, transfer to a "clean" array, then feed
439 * them to the output handler.
440 */
441
442 for (mlen = i = 0; i < tree.len; i++)
443 if (tree.node[i].matched)
444 mlen++;
445
446 ress = mandoc_malloc(mlen * sizeof(struct res));
447
448 for (mlen = i = 0; i < tree.len; i++)
449 if (tree.node[i].matched)
450 memcpy(&ress[mlen++], &tree.node[i].res,
451 sizeof(struct res));
452
453 (*res)(ress, mlen, arg);
454 free(ress);
455
456 rc = 1;
457 out:
458 for (i = 0; i < tree.len; i++)
459 recfree(&tree.node[i]);
460
461 free(tree.node);
462 mchars_free(mc);
463 return(rc);
464 }
465
466 static int
467 single_search(struct rectree *tree, const struct opts *opts,
468 const struct expr *expr, size_t terms,
469 struct mchars *mc, int vol)
470 {
471 int root, leaf, ch;
472 DBT key, val;
473 DB *btree, *idx;
474 char *buf;
475 struct rec *rs;
476 struct rec r;
477 uint64_t mask;
478 recno_t rec;
479
480 root = -1;
481 leaf = -1;
482 btree = NULL;
483 idx = NULL;
484 buf = NULL;
485 rs = tree->node;
486
487 memset(&r, 0, sizeof(struct rec));
488
489 if (NULL == (btree = btree_open()))
490 return(1);
491
492 if (NULL == (idx = index_open())) {
493 (*btree->close)(btree);
494 return(1);
495 }
496
497 while (0 == (ch = (*btree->seq)(btree, &key, &val, R_NEXT))) {
498 if ( ! btree_read(&key, &val, mc, &mask, &rec, &buf))
499 break;
500
501 /*
502 * See if this keyword record matches any of the
503 * expressions we have stored.
504 */
505 if ( ! exprmark(expr, buf, mask, NULL))
506 continue;
507
508 /*
509 * O(log n) scan for prior records. Since a record
510 * number is unbounded, this has decent performance over
511 * a complex hash function.
512 */
513
514 for (leaf = root; leaf >= 0; )
515 if (rec > rs[leaf].res.rec &&
516 rs[leaf].rhs >= 0)
517 leaf = rs[leaf].rhs;
518 else if (rec < rs[leaf].res.rec &&
519 rs[leaf].lhs >= 0)
520 leaf = rs[leaf].lhs;
521 else
522 break;
523
524 /*
525 * If we find a record, see if it has already evaluated
526 * to true. If it has, great, just keep going. If not,
527 * try to evaluate it now and continue anyway.
528 */
529
530 if (leaf >= 0 && rs[leaf].res.rec == rec) {
531 if (0 == rs[leaf].matched)
532 exprexec(expr, buf, mask, &rs[leaf]);
533 continue;
534 }
535
536 /*
537 * We have a new file to examine.
538 * Extract the manpage's metadata from the index
539 * database, then begin partial evaluation.
540 */
541
542 key.data = &rec;
543 key.size = sizeof(recno_t);
544
545 if (0 != (*idx->get)(idx, &key, &val, 0))
546 break;
547
548 r.lhs = r.rhs = -1;
549 if ( ! index_read(&key, &val, vol, mc, &r))
550 break;
551
552 /* XXX: this should be elsewhere, I guess? */
553
554 if (opts->cat && strcasecmp(opts->cat, r.res.cat))
555 continue;
556
557 if (opts->arch && *r.res.arch)
558 if (strcasecmp(opts->arch, r.res.arch))
559 continue;
560
561 tree->node = rs = mandoc_realloc
562 (rs, (tree->len + 1) * sizeof(struct rec));
563
564 memcpy(&rs[tree->len], &r, sizeof(struct rec));
565 memset(&r, 0, sizeof(struct rec));
566 rs[tree->len].matches =
567 mandoc_calloc(terms, sizeof(int));
568
569 exprexec(expr, buf, mask, &rs[tree->len]);
570
571 /* Append to our tree. */
572
573 if (leaf >= 0) {
574 if (rec > rs[leaf].res.rec)
575 rs[leaf].rhs = tree->len;
576 else
577 rs[leaf].lhs = tree->len;
578 } else
579 root = tree->len;
580
581 tree->len++;
582 }
583
584 (*btree->close)(btree);
585 (*idx->close)(idx);
586
587 free(buf);
588 recfree(&r);
589 return(1 == ch);
590 }
591
592 static void
593 recfree(struct rec *rec)
594 {
595
596 free(rec->res.file);
597 free(rec->res.cat);
598 free(rec->res.title);
599 free(rec->res.arch);
600 free(rec->res.desc);
601
602 free(rec->matches);
603 }
604
605 /*
606 * Compile a list of straight-up terms.
607 * The arguments are re-written into ~[[:<:]]term[[:>:]], or "term"
608 * surrounded by word boundaries, then pumped through exprterm().
609 * Terms are case-insensitive.
610 * This emulates whatis(1) behaviour.
611 */
612 struct expr *
613 termcomp(int argc, char *argv[], size_t *tt)
614 {
615 char *buf;
616 int pos;
617 struct expr *e, *next;
618 size_t sz;
619
620 buf = NULL;
621 e = NULL;
622 *tt = 0;
623
624 for (pos = argc - 1; pos >= 0; pos--) {
625 sz = strlen(argv[pos]) + 18;
626 buf = mandoc_realloc(buf, sz);
627 strlcpy(buf, "Nm~[[:<:]]", sz);
628 strlcat(buf, argv[pos], sz);
629 strlcat(buf, "[[:>:]]", sz);
630 if (NULL == (next = exprterm(buf, 0))) {
631 free(buf);
632 exprfree(e);
633 return(NULL);
634 }
635 next->next = e;
636 e = next;
637 (*tt)++;
638 }
639
640 free(buf);
641 return(e);
642 }
643
644 /*
645 * Compile a sequence of logical expressions.
646 * See apropos.1 for a grammar of this sequence.
647 */
648 struct expr *
649 exprcomp(int argc, char *argv[], size_t *tt)
650 {
651 int pos, lvl;
652 struct expr *e;
653
654 pos = lvl = 0;
655 *tt = 0;
656
657 e = exprexpr(argc, argv, &pos, &lvl, tt);
658
659 if (0 == lvl && pos >= argc)
660 return(e);
661
662 exprfree(e);
663 return(NULL);
664 }
665
666 /*
667 * Compile an array of tokens into an expression.
668 * An informal expression grammar is defined in apropos(1).
669 * Return NULL if we fail doing so. All memory will be cleaned up.
670 * Return the root of the expression sequence if alright.
671 */
672 static struct expr *
673 exprexpr(int argc, char *argv[], int *pos, int *lvl, size_t *tt)
674 {
675 struct expr *e, *first, *next;
676 int log;
677
678 first = next = NULL;
679
680 for ( ; *pos < argc; (*pos)++) {
681 e = next;
682
683 /*
684 * Close out a subexpression.
685 */
686
687 if (NULL != e && 0 == strcmp(")", argv[*pos])) {
688 if (--(*lvl) < 0)
689 goto err;
690 break;
691 }
692
693 /*
694 * Small note: if we're just starting, don't let "-a"
695 * and "-o" be considered logical operators: they're
696 * just tokens unless pairwise joining, in which case we
697 * record their existence (or assume "OR").
698 */
699 log = 0;
700
701 if (NULL != e && 0 == strcmp("-a", argv[*pos]))
702 log = 1;
703 else if (NULL != e && 0 == strcmp("-o", argv[*pos]))
704 log = 2;
705
706 if (log > 0 && ++(*pos) >= argc)
707 goto err;
708
709 /*
710 * Now we parse the term part. This can begin with
711 * "-i", in which case the expression is case
712 * insensitive.
713 */
714
715 if (0 == strcmp("(", argv[*pos])) {
716 ++(*pos);
717 ++(*lvl);
718 next = mandoc_calloc(1, sizeof(struct expr));
719 next->subexpr = exprexpr(argc, argv, pos, lvl, tt);
720 if (NULL == next->subexpr) {
721 free(next);
722 next = NULL;
723 }
724 } else if (0 == strcmp("-i", argv[*pos])) {
725 if (++(*pos) >= argc)
726 goto err;
727 next = exprterm(argv[*pos], 0);
728 } else
729 next = exprterm(argv[*pos], 1);
730
731 if (NULL == next)
732 goto err;
733
734 next->and = log == 1;
735 next->index = (int)(*tt)++;
736
737 /* Append to our chain of expressions. */
738
739 if (NULL == first) {
740 assert(NULL == e);
741 first = next;
742 } else {
743 assert(NULL != e);
744 e->next = next;
745 }
746 }
747
748 return(first);
749 err:
750 exprfree(first);
751 return(NULL);
752 }
753
754 /*
755 * Parse a terminal expression with the grammar as defined in
756 * apropos(1).
757 * Return NULL if we fail the parse.
758 */
759 static struct expr *
760 exprterm(char *buf, int cs)
761 {
762 struct expr e;
763 struct expr *p;
764 char *key;
765 int i;
766
767 memset(&e, 0, sizeof(struct expr));
768
769 /* Choose regex or substring match. */
770
771 if (NULL == (e.v = strpbrk(buf, "=~"))) {
772 e.regex = 0;
773 e.v = buf;
774 } else {
775 e.regex = '~' == *e.v;
776 *e.v++ = '\0';
777 }
778
779 /* Determine the record types to search for. */
780
781 e.mask = 0;
782 if (buf < e.v) {
783 while (NULL != (key = strsep(&buf, ","))) {
784 i = 0;
785 while (types[i].mask &&
786 strcmp(types[i].name, key))
787 i++;
788 e.mask |= types[i].mask;
789 }
790 }
791 if (0 == e.mask)
792 e.mask = TYPE_Nm | TYPE_Nd;
793
794 if (e.regex) {
795 i = REG_EXTENDED | REG_NOSUB | (cs ? 0 : REG_ICASE);
796 if (regcomp(&e.re, e.v, i))
797 return(NULL);
798 }
799
800 e.v = mandoc_strdup(e.v);
801
802 p = mandoc_calloc(1, sizeof(struct expr));
803 memcpy(p, &e, sizeof(struct expr));
804 return(p);
805 }
806
807 void
808 exprfree(struct expr *p)
809 {
810 struct expr *pp;
811
812 while (NULL != p) {
813 if (p->subexpr)
814 exprfree(p->subexpr);
815 if (p->regex)
816 regfree(&p->re);
817 free(p->v);
818 pp = p->next;
819 free(p);
820 p = pp;
821 }
822 }
823
824 static int
825 exprmark(const struct expr *p, const char *cp,
826 uint64_t mask, int *ms)
827 {
828
829 for ( ; p; p = p->next) {
830 if (p->subexpr) {
831 if (exprmark(p->subexpr, cp, mask, ms))
832 return(1);
833 continue;
834 } else if ( ! (mask & p->mask))
835 continue;
836
837 if (p->regex) {
838 if (regexec(&p->re, cp, 0, NULL, 0))
839 continue;
840 } else if (NULL == strcasestr(cp, p->v))
841 continue;
842
843 if (NULL == ms)
844 return(1);
845 else
846 ms[p->index] = 1;
847 }
848
849 return(0);
850 }
851
852 static int
853 expreval(const struct expr *p, int *ms)
854 {
855 int match;
856
857 /*
858 * AND has precedence over OR. Analysis is left-right, though
859 * it doesn't matter because there are no side-effects.
860 * Thus, step through pairwise ANDs and accumulate their Boolean
861 * evaluation. If we encounter a single true AND collection or
862 * standalone term, the whole expression is true (by definition
863 * of OR).
864 */
865
866 for (match = 0; p && ! match; p = p->next) {
867 /* Evaluate a subexpression, if applicable. */
868 if (p->subexpr && ! ms[p->index])
869 ms[p->index] = expreval(p->subexpr, ms);
870
871 match = ms[p->index];
872 for ( ; p->next && p->next->and; p = p->next) {
873 /* Evaluate a subexpression, if applicable. */
874 if (p->next->subexpr && ! ms[p->next->index])
875 ms[p->next->index] =
876 expreval(p->next->subexpr, ms);
877 match = match && ms[p->next->index];
878 }
879 }
880
881 return(match);
882 }
883
884 /*
885 * First, update the array of terms for which this expression evaluates
886 * to true.
887 * Second, logically evaluate all terms over the updated array of truth
888 * values.
889 * If this evaluates to true, mark the expression as satisfied.
890 */
891 static void
892 exprexec(const struct expr *e, const char *cp,
893 uint64_t mask, struct rec *r)
894 {
895
896 assert(0 == r->matched);
897 exprmark(e, cp, mask, r->matches);
898 r->matched = expreval(e, r->matches);
899 }