summaryrefslogtreecommitdiffstats
path: root/gomoku/pickmove.c
diff options
context:
space:
mode:
authortls <tls@NetBSD.org>1996-12-28 18:44:55 +0000
committertls <tls@NetBSD.org>1996-12-28 18:44:55 +0000
commit13b5b0009082f9bc2c991c326ca650178761bdff (patch)
treed916a34c13efc6c68876aa19636e0b9fc59062da /gomoku/pickmove.c
parent961346c7c0958d177aa877f67befbda3f147a857 (diff)
downloadbsdgames-darwin-13b5b0009082f9bc2c991c326ca650178761bdff.tar.gz
bsdgames-darwin-13b5b0009082f9bc2c991c326ca650178761bdff.tar.zst
bsdgames-darwin-13b5b0009082f9bc2c991c326ca650178761bdff.zip
Import of 4.4BSD-Lite2 source
Diffstat (limited to 'gomoku/pickmove.c')
-rw-r--r--gomoku/pickmove.c1479
1 files changed, 1479 insertions, 0 deletions
diff --git a/gomoku/pickmove.c b/gomoku/pickmove.c
new file mode 100644
index 00000000..197d3c5c
--- /dev/null
+++ b/gomoku/pickmove.c
@@ -0,0 +1,1479 @@
+/*
+ * Copyright (c) 1994
+ * The Regents of the University of California. All rights reserved.
+ *
+ * This code is derived from software contributed to Berkeley by
+ * Ralph Campbell.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions
+ * are met:
+ * 1. Redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer.
+ * 2. Redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in the
+ * documentation and/or other materials provided with the distribution.
+ * 3. All advertising materials mentioning features or use of this software
+ * must display the following acknowledgement:
+ * This product includes software developed by the University of
+ * California, Berkeley and its contributors.
+ * 4. Neither the name of the University nor the names of its contributors
+ * may be used to endorse or promote products derived from this software
+ * without specific prior written permission.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
+ * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
+ * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
+ * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
+ * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
+ * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
+ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
+ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
+ * SUCH DAMAGE.
+ */
+
+#ifndef lint
+static char sccsid[] = "@(#)pickmove.c 8.2 (Berkeley) 5/3/95";
+#endif /* not lint */
+
+#include <stdio.h>
+#include <curses.h>
+#include <machine/limits.h>
+
+#include "gomoku.h"
+
+#define BITS_PER_INT (sizeof(int) * CHAR_BIT)
+#define MAPSZ (BAREA / BITS_PER_INT)
+
+#define BIT_SET(a, b) ((a)[(b)/BITS_PER_INT] |= (1 << ((b) % BITS_PER_INT)))
+#define BIT_CLR(a, b) ((a)[(b)/BITS_PER_INT] &= ~(1 << ((b) % BITS_PER_INT)))
+#define BIT_TEST(a, b) ((a)[(b)/BITS_PER_INT] & (1 << ((b) % BITS_PER_INT)))
+
+struct combostr *hashcombos[FAREA]; /* hash list for finding duplicates */
+struct combostr *sortcombos; /* combos at higher levels */
+int combolen; /* number of combos in sortcombos */
+int nextcolor; /* color of next move */
+int elistcnt; /* count of struct elist allocated */
+int combocnt; /* count of struct combostr allocated */
+int forcemap[MAPSZ]; /* map for blocking <1,x> combos */
+int tmpmap[MAPSZ]; /* map for blocking <1,x> combos */
+int nforce; /* count of opponent <1,x> combos */
+
+pickmove(us)
+ int us;
+{
+ register struct spotstr *sp, *sp1, *sp2;
+ register union comboval *Ocp, *Tcp;
+ char *str;
+ int i, j, m;
+
+ /* first move is easy */
+ if (movenum == 1)
+ return (PT(K,10));
+
+ /* initialize all the board values */
+ for (sp = &board[PT(T,20)]; --sp >= &board[PT(A,1)]; ) {
+ sp->s_combo[BLACK].s = MAXCOMBO + 1;
+ sp->s_combo[WHITE].s = MAXCOMBO + 1;
+ sp->s_level[BLACK] = 255;
+ sp->s_level[WHITE] = 255;
+ sp->s_nforce[BLACK] = 0;
+ sp->s_nforce[WHITE] = 0;
+ sp->s_flg &= ~(FFLAGALL | MFLAGALL);
+ }
+ nforce = 0;
+ memset(forcemap, 0, sizeof(forcemap));
+
+ /* compute new values */
+ nextcolor = us;
+ scanframes(BLACK);
+ scanframes(WHITE);
+
+ /* find the spot with the highest value */
+ for (sp = sp1 = sp2 = &board[PT(T,19)]; --sp >= &board[PT(A,1)]; ) {
+ if (sp->s_occ != EMPTY)
+ continue;
+ if (debug && (sp->s_combo[BLACK].c.a == 1 ||
+ sp->s_combo[WHITE].c.a == 1)) {
+ sprintf(fmtbuf, "- %s %x/%d %d %x/%d %d %d", stoc(sp - board),
+ sp->s_combo[BLACK].s, sp->s_level[BLACK],
+ sp->s_nforce[BLACK],
+ sp->s_combo[WHITE].s, sp->s_level[WHITE],
+ sp->s_nforce[WHITE],
+ sp->s_wval);
+ dlog(fmtbuf);
+ }
+ /* pick the best black move */
+ if (better(sp, sp1, BLACK))
+ sp1 = sp;
+ /* pick the best white move */
+ if (better(sp, sp2, WHITE))
+ sp2 = sp;
+ }
+
+ if (debug) {
+ sprintf(fmtbuf, "B %s %x/%d %d %x/%d %d %d %d",
+ stoc(sp1 - board),
+ sp1->s_combo[BLACK].s, sp1->s_level[BLACK],
+ sp1->s_nforce[BLACK],
+ sp1->s_combo[WHITE].s, sp1->s_level[WHITE],
+ sp1->s_nforce[WHITE], sp1->s_wval);
+ dlog(fmtbuf);
+ sprintf(fmtbuf, "W %s %x/%d %d %x/%d %d %d %d",
+ stoc(sp2 - board),
+ sp2->s_combo[WHITE].s, sp2->s_level[WHITE],
+ sp2->s_nforce[WHITE],
+ sp2->s_combo[BLACK].s, sp2->s_level[BLACK],
+ sp2->s_nforce[BLACK], sp2->s_wval);
+ dlog(fmtbuf);
+ /*
+ * Check for more than one force that can't
+ * all be blocked with one move.
+ */
+ sp = (us == BLACK) ? sp2 : sp1;
+ m = sp - board;
+ if (sp->s_combo[!us].c.a == 1 && !BIT_TEST(forcemap, m))
+ dlog("*** Can't be blocked");
+ }
+ if (us == BLACK) {
+ Ocp = &sp1->s_combo[BLACK];
+ Tcp = &sp2->s_combo[WHITE];
+ } else {
+ Tcp = &sp1->s_combo[BLACK];
+ Ocp = &sp2->s_combo[WHITE];
+ sp = sp1;
+ sp1 = sp2;
+ sp2 = sp;
+ }
+ /*
+ * Block their combo only if we have to (i.e., if they are one move
+ * away from completing a force and we don't have a force that
+ * we can complete which takes fewer moves to win).
+ */
+ if (Tcp->c.a <= 1 && (Ocp->c.a > 1 ||
+ Tcp->c.a + Tcp->c.b < Ocp->c.a + Ocp->c.b))
+ return (sp2 - board);
+ return (sp1 - board);
+}
+
+/*
+ * Return true if spot 'sp' is better than spot 'sp1' for color 'us'.
+ */
+better(sp, sp1, us)
+ struct spotstr *sp;
+ struct spotstr *sp1;
+ int us;
+{
+ int them, s, s1;
+
+ if (sp->s_combo[us].s < sp1->s_combo[us].s)
+ return (1);
+ if (sp->s_combo[us].s != sp1->s_combo[us].s)
+ return (0);
+ if (sp->s_level[us] < sp1->s_level[us])
+ return (1);
+ if (sp->s_level[us] != sp1->s_level[us])
+ return (0);
+ if (sp->s_nforce[us] > sp1->s_nforce[us])
+ return (1);
+ if (sp->s_nforce[us] != sp1->s_nforce[us])
+ return (0);
+
+ them = !us;
+ s = sp - board;
+ s1 = sp1 - board;
+ if (BIT_TEST(forcemap, s) && !BIT_TEST(forcemap, s1))
+ return (1);
+ if (!BIT_TEST(forcemap, s) && BIT_TEST(forcemap, s1))
+ return (0);
+ if (sp->s_combo[them].s < sp1->s_combo[them].s)
+ return (1);
+ if (sp->s_combo[them].s != sp1->s_combo[them].s)
+ return (0);
+ if (sp->s_level[them] < sp1->s_level[them])
+ return (1);
+ if (sp->s_level[them] != sp1->s_level[them])
+ return (0);
+ if (sp->s_nforce[them] > sp1->s_nforce[them])
+ return (1);
+ if (sp->s_nforce[them] != sp1->s_nforce[them])
+ return (0);
+
+ if (sp->s_wval > sp1->s_wval)
+ return (1);
+ if (sp->s_wval != sp1->s_wval)
+ return (0);
+
+#ifdef SVR4
+ return (rand() & 1);
+#else
+ return (random() & 1);
+#endif
+}
+
+int curcolor; /* implicit parameter to makecombo() */
+int curlevel; /* implicit parameter to makecombo() */
+
+/*
+ * Scan the sorted list of non-empty frames and
+ * update the minimum combo values for each empty spot.
+ * Also, try to combine frames to find more complex (chained) moves.
+ */
+scanframes(color)
+ int color;
+{
+ register struct combostr *cbp, *ecbp;
+ register struct spotstr *sp;
+ register union comboval *cp;
+ register struct elist *ep, *nep;
+ register int i, r, d, n;
+ union comboval cb;
+
+ curcolor = color;
+
+ /* check for empty list of frames */
+ cbp = sortframes[color];
+ if (cbp == (struct combostr *)0)
+ return;
+
+ /* quick check for four in a row */
+ sp = &board[cbp->c_vertex];
+ cb.s = sp->s_fval[color][d = cbp->c_dir].s;
+ if (cb.s < 0x101) {
+ d = dd[d];
+ for (i = 5 + cb.c.b; --i >= 0; sp += d) {
+ if (sp->s_occ != EMPTY)
+ continue;
+ sp->s_combo[color].s = cb.s;
+ sp->s_level[color] = 1;
+ }
+ return;
+ }
+
+ /*
+ * Update the minimum combo value for each spot in the frame
+ * and try making all combinations of two frames intersecting at
+ * an empty spot.
+ */
+ n = combolen;
+ ecbp = cbp;
+ do {
+ sp = &board[cbp->c_vertex];
+ cp = &sp->s_fval[color][r = cbp->c_dir];
+ d = dd[r];
+ if (cp->c.b) {
+ /*
+ * Since this is the first spot of an open ended
+ * frame, we treat it as a closed frame.
+ */
+ cb.c.a = cp->c.a + 1;
+ cb.c.b = 0;
+ if (cb.s < sp->s_combo[color].s) {
+ sp->s_combo[color].s = cb.s;
+ sp->s_level[color] = 1;
+ }
+ /*
+ * Try combining other frames that intersect
+ * at this spot.
+ */
+ makecombo2(cbp, sp, 0, cb.s);
+ if (cp->s != 0x101)
+ cb.s = cp->s;
+ else if (color != nextcolor)
+ memset(tmpmap, 0, sizeof(tmpmap));
+ sp += d;
+ i = 1;
+ } else {
+ cb.s = cp->s;
+ i = 0;
+ }
+ for (; i < 5; i++, sp += d) { /* for each spot */
+ if (sp->s_occ != EMPTY)
+ continue;
+ if (cp->s < sp->s_combo[color].s) {
+ sp->s_combo[color].s = cp->s;
+ sp->s_level[color] = 1;
+ }
+ if (cp->s == 0x101) {
+ sp->s_nforce[color]++;
+ if (color != nextcolor) {
+ n = sp - board;
+ BIT_SET(tmpmap, n);
+ }
+ }
+ /*
+ * Try combining other frames that intersect
+ * at this spot.
+ */
+ makecombo2(cbp, sp, i, cb.s);
+ }
+ if (cp->s == 0x101 && color != nextcolor) {
+ if (nforce == 0)
+ memcpy(forcemap, tmpmap, sizeof(tmpmap));
+ else {
+ for (i = 0; i < MAPSZ; i++)
+ forcemap[i] &= tmpmap[i];
+ }
+ }
+ /* mark frame as having been processed */
+ board[cbp->c_vertex].s_flg |= MFLAG << r;
+ } while ((cbp = cbp->c_next) != ecbp);
+
+ /*
+ * Try to make new 3rd level combos, 4th level, etc.
+ * Limit the search depth early in the game.
+ */
+ d = 2;
+ while (d <= ((movenum + 1) >> 1) && combolen > n) {
+ if (debug) {
+ sprintf(fmtbuf, "%cL%d %d %d %d", "BW"[color],
+ d, combolen - n, combocnt, elistcnt);
+ dlog(fmtbuf);
+ refresh();
+ }
+ n = combolen;
+ addframes(d);
+ d++;
+ }
+
+ /* scan for combos at empty spots */
+ for (sp = &board[PT(T,20)]; --sp >= &board[PT(A,1)]; ) {
+ for (ep = sp->s_empty; ep; ep = nep) {
+ cbp = ep->e_combo;
+ if (cbp->c_combo.s <= sp->s_combo[color].s) {
+ if (cbp->c_combo.s != sp->s_combo[color].s) {
+ sp->s_combo[color].s = cbp->c_combo.s;
+ sp->s_level[color] = cbp->c_nframes;
+ } else if (cbp->c_nframes < sp->s_level[color])
+ sp->s_level[color] = cbp->c_nframes;
+ }
+ nep = ep->e_next;
+ free(ep);
+ elistcnt--;
+ }
+ sp->s_empty = (struct elist *)0;
+ for (ep = sp->s_nempty; ep; ep = nep) {
+ cbp = ep->e_combo;
+ if (cbp->c_combo.s <= sp->s_combo[color].s) {
+ if (cbp->c_combo.s != sp->s_combo[color].s) {
+ sp->s_combo[color].s = cbp->c_combo.s;
+ sp->s_level[color] = cbp->c_nframes;
+ } else if (cbp->c_nframes < sp->s_level[color])
+ sp->s_level[color] = cbp->c_nframes;
+ }
+ nep = ep->e_next;
+ free(ep);
+ elistcnt--;
+ }
+ sp->s_nempty = (struct elist *)0;
+ }
+
+ /* remove old combos */
+ if ((cbp = sortcombos) != (struct combostr *)0) {
+ struct combostr *ncbp;
+
+ /* scan the list */
+ ecbp = cbp;
+ do {
+ ncbp = cbp->c_next;
+ free(cbp);
+ combocnt--;
+ } while ((cbp = ncbp) != ecbp);
+ sortcombos = (struct combostr *)0;
+ }
+ combolen = 0;
+
+#ifdef DEBUG
+ if (combocnt) {
+ sprintf(fmtbuf, "scanframes: %c combocnt %d", "BW"[color],
+ combocnt);
+ dlog(fmtbuf);
+ whatsup(0);
+ }
+ if (elistcnt) {
+ sprintf(fmtbuf, "scanframes: %c elistcnt %d", "BW"[color],
+ elistcnt);
+ dlog(fmtbuf);
+ whatsup(0);
+ }
+#endif
+}
+
+/*
+ * Compute all level 2 combos of frames intersecting spot 'osp'
+ * within the frame 'ocbp' and combo value 's'.
+ */
+makecombo2(ocbp, osp, off, s)
+ struct combostr *ocbp;
+ struct spotstr *osp;
+ int off;
+ int s;
+{
+ register struct spotstr *sp, *fsp;
+ register struct combostr *ncbp;
+ register int f, r, d, c;
+ int baseB, fcnt, emask, bmask, n;
+ union comboval ocb, fcb;
+ struct combostr **scbpp, *fcbp;
+
+ /* try to combine a new frame with those found so far */
+ ocb.s = s;
+ baseB = ocb.c.a + ocb.c.b - 1;
+ fcnt = ocb.c.a - 2;
+ emask = fcnt ? ((ocb.c.b ? 0x1E : 0x1F) & ~(1 << off)) : 0;
+ for (r = 4; --r >= 0; ) { /* for each direction */
+ /* don't include frames that overlap in the same direction */
+ if (r == ocbp->c_dir)
+ continue;
+ d = dd[r];
+ /*
+ * Frame A combined with B is the same value as B combined with A
+ * so skip frames that have already been processed (MFLAG).
+ * Also skip blocked frames (BFLAG) and frames that are <1,x>
+ * since combining another frame with it isn't valid.
+ */
+ bmask = (BFLAG | FFLAG | MFLAG) << r;
+ fsp = osp;
+ for (f = 0; f < 5; f++, fsp -= d) { /* for each frame */
+ if (fsp->s_occ == BORDER)
+ break;
+ if (fsp->s_flg & bmask)
+ continue;
+
+ /* don't include frames of the wrong color */
+ fcb.s = fsp->s_fval[curcolor][r].s;
+ if (fcb.c.a >= MAXA)
+ continue;
+
+ /*
+ * Get the combo value for this frame.
+ * If this is the end point of the frame,
+ * use the closed ended value for the frame.
+ */
+ if (f == 0 && fcb.c.b || fcb.s == 0x101) {
+ fcb.c.a++;
+ fcb.c.b = 0;
+ }
+
+ /* compute combo value */
+ c = fcb.c.a + ocb.c.a - 3;
+ if (c > 4)
+ continue;
+ n = fcb.c.a + fcb.c.b - 1;
+ if (baseB < n)
+ n = baseB;
+
+ /* make a new combo! */
+ ncbp = (struct combostr *)malloc(sizeof(struct combostr) +
+ 2 * sizeof(struct combostr *));
+ scbpp = (struct combostr **)(ncbp + 1);
+ fcbp = fsp->s_frame[r];
+ if (ocbp < fcbp) {
+ scbpp[0] = ocbp;
+ scbpp[1] = fcbp;
+ } else {
+ scbpp[0] = fcbp;
+ scbpp[1] = ocbp;
+ }
+ ncbp->c_combo.c.a = c;
+ ncbp->c_combo.c.b = n;
+ ncbp->c_link[0] = ocbp;
+ ncbp->c_link[1] = fcbp;
+ ncbp->c_linkv[0].s = ocb.s;
+ ncbp->c_linkv[1].s = fcb.s;
+ ncbp->c_voff[0] = off;
+ ncbp->c_voff[1] = f;
+ ncbp->c_vertex = osp - board;
+ ncbp->c_nframes = 2;
+ ncbp->c_dir = 0;
+ ncbp->c_frameindex = 0;
+ ncbp->c_flg = (ocb.c.b) ? C_OPEN_0 : 0;
+ if (fcb.c.b)
+ ncbp->c_flg |= C_OPEN_1;
+ ncbp->c_framecnt[0] = fcnt;
+ ncbp->c_emask[0] = emask;
+ ncbp->c_framecnt[1] = fcb.c.a - 2;
+ ncbp->c_emask[1] = ncbp->c_framecnt[1] ?
+ ((fcb.c.b ? 0x1E : 0x1F) & ~(1 << f)) : 0;
+ combocnt++;
+
+ if (c == 1 && debug > 1 || debug > 3) {
+ sprintf(fmtbuf, "%c c %d %d m %x %x o %d %d",
+ "bw"[curcolor],
+ ncbp->c_framecnt[0], ncbp->c_framecnt[1],
+ ncbp->c_emask[0], ncbp->c_emask[1],
+ ncbp->c_voff[0], ncbp->c_voff[1]);
+ dlog(fmtbuf);
+ printcombo(ncbp, fmtbuf);
+ dlog(fmtbuf);
+ }
+ if (c > 1) {
+ /* record the empty spots that will complete this combo */
+ makeempty(ncbp);
+
+ /* add the new combo to the end of the list */
+ appendcombo(ncbp, curcolor);
+ } else {
+ updatecombo(ncbp, curcolor);
+ free(ncbp);
+ combocnt--;
+ }
+#ifdef DEBUG
+ if (c == 1 && debug > 1 || debug > 5) {
+ markcombo(ncbp);
+ bdisp();
+ whatsup(0);
+ clearcombo(ncbp, 0);
+ }
+#endif /* DEBUG */
+ }
+ }
+}
+
+/*
+ * Scan the sorted list of frames and try to add a frame to
+ * combinations of 'level' number of frames.
+ */
+addframes(level)
+ int level;
+{
+ register struct combostr *cbp, *ecbp;
+ register struct spotstr *sp, *fsp;
+ register struct elist *ep, *nep;
+ register int i, r, d;
+ struct combostr **cbpp, *pcbp;
+ union comboval fcb, cb;
+
+ curlevel = level;
+
+ /* scan for combos at empty spots */
+ i = curcolor;
+ for (sp = &board[PT(T,20)]; --sp >= &board[PT(A,1)]; ) {
+ for (ep = sp->s_empty; ep; ep = nep) {
+ cbp = ep->e_combo;
+ if (cbp->c_combo.s <= sp->s_combo[i].s) {
+ if (cbp->c_combo.s != sp->s_combo[i].s) {
+ sp->s_combo[i].s = cbp->c_combo.s;
+ sp->s_level[i] = cbp->c_nframes;
+ } else if (cbp->c_nframes < sp->s_level[i])
+ sp->s_level[i] = cbp->c_nframes;
+ }
+ nep = ep->e_next;
+ free(ep);
+ elistcnt--;
+ }
+ sp->s_empty = sp->s_nempty;
+ sp->s_nempty = (struct elist *)0;
+ }
+
+ /* try to add frames to the uncompleted combos at level curlevel */
+ cbp = ecbp = sortframes[curcolor];
+ do {
+ fsp = &board[cbp->c_vertex];
+ r = cbp->c_dir;
+ /* skip frames that are part of a <1,x> combo */
+ if (fsp->s_flg & (FFLAG << r))
+ continue;
+
+ /*
+ * Don't include <1,x> combo frames,
+ * treat it as a closed three in a row instead.
+ */
+ fcb.s = fsp->s_fval[curcolor][r].s;
+ if (fcb.s == 0x101)
+ fcb.s = 0x200;
+
+ /*
+ * If this is an open ended frame, use
+ * the combo value with the end closed.
+ */
+ if (fsp->s_occ == EMPTY) {
+ if (fcb.c.b) {
+ cb.c.a = fcb.c.a + 1;
+ cb.c.b = 0;
+ } else
+ cb.s = fcb.s;
+ makecombo(cbp, fsp, 0, cb.s);
+ }
+
+ /*
+ * The next four spots are handled the same for both
+ * open and closed ended frames.
+ */
+ d = dd[r];
+ sp = fsp + d;
+ for (i = 1; i < 5; i++, sp += d) {
+ if (sp->s_occ != EMPTY)
+ continue;
+ makecombo(cbp, sp, i, fcb.s);
+ }
+ } while ((cbp = cbp->c_next) != ecbp);
+
+ /* put all the combos in the hash list on the sorted list */
+ cbpp = &hashcombos[FAREA];
+ do {
+ cbp = *--cbpp;
+ if (cbp == (struct combostr *)0)
+ continue;
+ *cbpp = (struct combostr *)0;
+ ecbp = sortcombos;
+ if (ecbp == (struct combostr *)0)
+ sortcombos = cbp;
+ else {
+ /* append to sort list */
+ pcbp = ecbp->c_prev;
+ pcbp->c_next = cbp;
+ ecbp->c_prev = cbp->c_prev;
+ cbp->c_prev->c_next = ecbp;
+ cbp->c_prev = pcbp;
+ }
+ } while (cbpp != hashcombos);
+}
+
+/*
+ * Compute all level N combos of frames intersecting spot 'osp'
+ * within the frame 'ocbp' and combo value 's'.
+ */
+makecombo(ocbp, osp, off, s)
+ struct combostr *ocbp;
+ struct spotstr *osp;
+ int off;
+ int s;
+{
+ register struct combostr *cbp, *ncbp;
+ register struct spotstr *sp;
+ register struct elist *ep;
+ register int n, c;
+ struct elist *nep, **epp;
+ struct combostr **scbpp;
+ int baseB, fcnt, emask, verts, d;
+ union comboval ocb, cb;
+ struct ovlp_info vertices[1];
+
+ ocb.s = s;
+ baseB = ocb.c.a + ocb.c.b - 1;
+ fcnt = ocb.c.a - 2;
+ emask = fcnt ? ((ocb.c.b ? 0x1E : 0x1F) & ~(1 << off)) : 0;
+ for (ep = osp->s_empty; ep; ep = ep->e_next) {
+ /* check for various kinds of overlap */
+ cbp = ep->e_combo;
+ verts = checkframes(cbp, ocbp, osp, s, vertices);
+ if (verts < 0)
+ continue;
+
+ /* check to see if this frame forms a valid loop */
+ if (verts) {
+ sp = &board[vertices[0].o_intersect];
+#ifdef DEBUG
+ if (sp->s_occ != EMPTY) {
+ sprintf(fmtbuf, "loop: %c %s", "BW"[curcolor],
+ stoc(sp - board));
+ dlog(fmtbuf);
+ whatsup(0);
+ }
+#endif
+ /*
+ * It is a valid loop if the intersection spot
+ * of the frame we are trying to attach is one
+ * of the completion spots of the combostr
+ * we are trying to attach the frame to.
+ */
+ for (nep = sp->s_empty; nep; nep = nep->e_next) {
+ if (nep->e_combo == cbp)
+ goto fnd;
+ if (nep->e_combo->c_nframes < cbp->c_nframes)
+ break;
+ }
+ /* frame overlaps but not at a valid spot */
+ continue;
+ fnd:
+ ;
+ }
+
+ /* compute the first half of the combo value */
+ c = cbp->c_combo.c.a + ocb.c.a - verts - 3;
+ if (c > 4)
+ continue;
+
+ /* compute the second half of the combo value */
+ n = ep->e_fval.c.a + ep->e_fval.c.b - 1;
+ if (baseB < n)
+ n = baseB;
+
+ /* make a new combo! */
+ ncbp = (struct combostr *)malloc(sizeof(struct combostr) +
+ (cbp->c_nframes + 1) * sizeof(struct combostr *));
+ scbpp = (struct combostr **)(ncbp + 1);
+ if (sortcombo(scbpp, (struct combostr **)(cbp + 1), ocbp)) {
+ free(ncbp);
+ continue;
+ }
+ combocnt++;
+
+ ncbp->c_combo.c.a = c;
+ ncbp->c_combo.c.b = n;
+ ncbp->c_link[0] = cbp;
+ ncbp->c_link[1] = ocbp;
+ ncbp->c_linkv[1].s = ocb.s;
+ ncbp->c_voff[1] = off;
+ ncbp->c_vertex = osp - board;
+ ncbp->c_nframes = cbp->c_nframes + 1;
+ ncbp->c_flg = ocb.c.b ? C_OPEN_1 : 0;
+ ncbp->c_frameindex = ep->e_frameindex;
+ /*
+ * Update the completion spot mask of the frame we
+ * are attaching 'ocbp' to so the intersection isn't
+ * listed twice.
+ */
+ ncbp->c_framecnt[0] = ep->e_framecnt;
+ ncbp->c_emask[0] = ep->e_emask;
+ if (verts) {
+ ncbp->c_flg |= C_LOOP;
+ ncbp->c_dir = vertices[0].o_frameindex;
+ ncbp->c_framecnt[1] = fcnt - 1;
+ if (ncbp->c_framecnt[1]) {
+ n = (vertices[0].o_intersect - ocbp->c_vertex) /
+ dd[ocbp->c_dir];
+ ncbp->c_emask[1] = emask & ~(1 << n);
+ } else
+ ncbp->c_emask[1] = 0;
+ ncbp->c_voff[0] = vertices[0].o_off;
+ } else {
+ ncbp->c_dir = 0;
+ ncbp->c_framecnt[1] = fcnt;
+ ncbp->c_emask[1] = emask;
+ ncbp->c_voff[0] = ep->e_off;
+ }
+
+ if (c == 1 && debug > 1 || debug > 3) {
+ sprintf(fmtbuf, "%c v%d i%d d%d c %d %d m %x %x o %d %d",
+ "bw"[curcolor], verts, ncbp->c_frameindex, ncbp->c_dir,
+ ncbp->c_framecnt[0], ncbp->c_framecnt[1],
+ ncbp->c_emask[0], ncbp->c_emask[1],
+ ncbp->c_voff[0], ncbp->c_voff[1]);
+ dlog(fmtbuf);
+ printcombo(ncbp, fmtbuf);
+ dlog(fmtbuf);
+ }
+ if (c > 1) {
+ /* record the empty spots that will complete this combo */
+ makeempty(ncbp);
+ combolen++;
+ } else {
+ /* update board values */
+ updatecombo(ncbp, curcolor);
+ }
+#ifdef DEBUG
+ if (c == 1 && debug > 1 || debug > 4) {
+ markcombo(ncbp);
+ bdisp();
+ whatsup(0);
+ clearcombo(ncbp, 0);
+ }
+#endif /* DEBUG */
+ }
+}
+
+#define MAXDEPTH 100
+struct elist einfo[MAXDEPTH];
+struct combostr *ecombo[MAXDEPTH]; /* separate from elist to save space */
+
+/*
+ * Add the combostr 'ocbp' to the empty spots list for each empty spot
+ * in 'ocbp' that will complete the combo.
+ */
+makeempty(ocbp)
+ struct combostr *ocbp;
+{
+ struct combostr *cbp, *tcbp, **cbpp;
+ struct elist *ep, *nep, **epp;
+ struct spotstr *sp;
+ int s, d, m, emask, i;
+ int nframes;
+
+ if (debug > 2) {
+ sprintf(fmtbuf, "E%c ", "bw"[curcolor]);
+ printcombo(ocbp, fmtbuf + 3);
+ dlog(fmtbuf);
+ }
+
+ /* should never happen but check anyway */
+ if ((nframes = ocbp->c_nframes) >= MAXDEPTH)
+ return;
+
+ /*
+ * The lower level combo can be pointed to by more than one
+ * higher level 'struct combostr' so we can't modify the
+ * lower level. Therefore, higher level combos store the
+ * real mask of the lower level frame in c_emask[0] and the
+ * frame number in c_frameindex.
+ *
+ * First we traverse the tree from top to bottom and save the
+ * connection info. Then we traverse the tree from bottom to
+ * top overwriting lower levels with the newer emask information.
+ */
+ ep = &einfo[nframes];
+ cbpp = &ecombo[nframes];
+ for (cbp = ocbp; tcbp = cbp->c_link[1]; cbp = cbp->c_link[0]) {
+ ep--;
+ ep->e_combo = cbp;
+ *--cbpp = cbp->c_link[1];
+ ep->e_off = cbp->c_voff[1];
+ ep->e_frameindex = cbp->c_frameindex;
+ ep->e_fval.s = cbp->c_linkv[1].s;
+ ep->e_framecnt = cbp->c_framecnt[1];
+ ep->e_emask = cbp->c_emask[1];
+ }
+ cbp = ep->e_combo;
+ ep--;
+ ep->e_combo = cbp;
+ *--cbpp = cbp->c_link[0];
+ ep->e_off = cbp->c_voff[0];
+ ep->e_frameindex = 0;
+ ep->e_fval.s = cbp->c_linkv[0].s;
+ ep->e_framecnt = cbp->c_framecnt[0];
+ ep->e_emask = cbp->c_emask[0];
+
+ /* now update the emask info */
+ s = 0;
+ for (i = 2, ep += 2; i < nframes; i++, ep++) {
+ cbp = ep->e_combo;
+ nep = &einfo[ep->e_frameindex];
+ nep->e_framecnt = cbp->c_framecnt[0];
+ nep->e_emask = cbp->c_emask[0];
+
+ if (cbp->c_flg & C_LOOP) {
+ s++;
+ /*
+ * Account for the fact that this frame connects
+ * to a previous one (thus forming a loop).
+ */
+ nep = &einfo[cbp->c_dir];
+ if (--nep->e_framecnt)
+ nep->e_emask &= ~(1 << cbp->c_voff[0]);
+ else
+ nep->e_emask = 0;
+ }
+ }
+
+ /*
+ * We only need to update the emask values of "complete" loops
+ * to include the intersection spots.
+ */
+ if (s && ocbp->c_combo.c.a == 2) {
+ /* process loops from the top down */
+ ep = &einfo[nframes];
+ do {
+ ep--;
+ cbp = ep->e_combo;
+ if (!(cbp->c_flg & C_LOOP))
+ continue;
+
+ /*
+ * Update the emask values to include the
+ * intersection spots.
+ */
+ nep = &einfo[cbp->c_dir];
+ nep->e_framecnt = 1;
+ nep->e_emask = 1 << cbp->c_voff[0];
+ ep->e_framecnt = 1;
+ ep->e_emask = 1 << ep->e_off;
+ ep = &einfo[ep->e_frameindex];
+ do {
+ ep->e_framecnt = 1;
+ ep->e_emask = 1 << ep->e_off;
+ ep = &einfo[ep->e_frameindex];
+ } while (ep > nep);
+ } while (ep != einfo);
+ }
+
+ /* check all the frames for completion spots */
+ for (i = 0, ep = einfo, cbpp = ecombo; i < nframes; i++, ep++, cbpp++) {
+ /* skip this frame if there are no incomplete spots in it */
+ if ((emask = ep->e_emask) == 0)
+ continue;
+ cbp = *cbpp;
+ sp = &board[cbp->c_vertex];
+ d = dd[cbp->c_dir];
+ for (s = 0, m = 1; s < 5; s++, sp += d, m <<= 1) {
+ if (sp->s_occ != EMPTY || !(emask & m))
+ continue;
+
+ /* add the combo to the list of empty spots */
+ nep = (struct elist *)malloc(sizeof(struct elist));
+ nep->e_combo = ocbp;
+ nep->e_off = s;
+ nep->e_frameindex = i;
+ if (ep->e_framecnt > 1) {
+ nep->e_framecnt = ep->e_framecnt - 1;
+ nep->e_emask = emask & ~m;
+ } else {
+ nep->e_framecnt = 0;
+ nep->e_emask = 0;
+ }
+ nep->e_fval.s = ep->e_fval.s;
+ if (debug > 2) {
+ sprintf(fmtbuf, "e %s o%d i%d c%d m%x %x",
+ stoc(sp - board),
+ nep->e_off,
+ nep->e_frameindex,
+ nep->e_framecnt,
+ nep->e_emask,
+ nep->e_fval.s);
+ dlog(fmtbuf);
+ }
+
+ /* sort by the number of frames in the combo */
+ nep->e_next = sp->s_nempty;
+ sp->s_nempty = nep;
+ elistcnt++;
+ }
+ }
+}
+
+/*
+ * Update the board value based on the combostr.
+ * This is called only if 'cbp' is a <1,x> combo.
+ * We handle things differently depending on whether the next move
+ * would be trying to "complete" the combo or trying to block it.
+ */
+updatecombo(cbp, color)
+ struct combostr *cbp;
+ int color;
+{
+ register struct framestr *fp;
+ register struct spotstr *sp;
+ register struct combostr *tcbp;
+ register int i, d;
+ int nframes, flg, s;
+ union comboval cb;
+
+ /* save the top level value for the whole combo */
+ cb.c.a = cbp->c_combo.c.a;
+ nframes = cbp->c_nframes;
+
+ if (color != nextcolor)
+ memset(tmpmap, 0, sizeof(tmpmap));
+
+ for (; tcbp = cbp->c_link[1]; cbp = cbp->c_link[0]) {
+ flg = cbp->c_flg;
+ cb.c.b = cbp->c_combo.c.b;
+ if (color == nextcolor) {
+ /* update the board value for the vertex */
+ sp = &board[cbp->c_vertex];
+ sp->s_nforce[color]++;
+ if (cb.s <= sp->s_combo[color].s) {
+ if (cb.s != sp->s_combo[color].s) {
+ sp->s_combo[color].s = cb.s;
+ sp->s_level[color] = nframes;
+ } else if (nframes < sp->s_level[color])
+ sp->s_level[color] = nframes;
+ }
+ } else {
+ /* update the board values for each spot in frame */
+ sp = &board[s = tcbp->c_vertex];
+ d = dd[tcbp->c_dir];
+ i = (flg & C_OPEN_1) ? 6 : 5;
+ for (; --i >= 0; sp += d, s += d) {
+ if (sp->s_occ != EMPTY)
+ continue;
+ sp->s_nforce[color]++;
+ if (cb.s <= sp->s_combo[color].s) {
+ if (cb.s != sp->s_combo[color].s) {
+ sp->s_combo[color].s = cb.s;
+ sp->s_level[color] = nframes;
+ } else if (nframes < sp->s_level[color])
+ sp->s_level[color] = nframes;
+ }
+ BIT_SET(tmpmap, s);
+ }
+ }
+
+ /* mark the frame as being part of a <1,x> combo */
+ board[tcbp->c_vertex].s_flg |= FFLAG << tcbp->c_dir;
+ }
+
+ if (color != nextcolor) {
+ /* update the board values for each spot in frame */
+ sp = &board[s = cbp->c_vertex];
+ d = dd[cbp->c_dir];
+ i = (flg & C_OPEN_0) ? 6 : 5;
+ for (; --i >= 0; sp += d, s += d) {
+ if (sp->s_occ != EMPTY)
+ continue;
+ sp->s_nforce[color]++;
+ if (cb.s <= sp->s_combo[color].s) {
+ if (cb.s != sp->s_combo[color].s) {
+ sp->s_combo[color].s = cb.s;
+ sp->s_level[color] = nframes;
+ } else if (nframes < sp->s_level[color])
+ sp->s_level[color] = nframes;
+ }
+ BIT_SET(tmpmap, s);
+ }
+ if (nforce == 0)
+ memcpy(forcemap, tmpmap, sizeof(tmpmap));
+ else {
+ for (i = 0; i < MAPSZ; i++)
+ forcemap[i] &= tmpmap[i];
+ }
+ nforce++;
+ }
+
+ /* mark the frame as being part of a <1,x> combo */
+ board[cbp->c_vertex].s_flg |= FFLAG << cbp->c_dir;
+}
+
+/*
+ * Add combo to the end of the list.
+ */
+appendcombo(cbp, color)
+ struct combostr *cbp;
+ int color;
+{
+ struct combostr *pcbp, *ncbp;
+
+ combolen++;
+ ncbp = sortcombos;
+ if (ncbp == (struct combostr *)0) {
+ sortcombos = cbp;
+ cbp->c_next = cbp;
+ cbp->c_prev = cbp;
+ return;
+ }
+ pcbp = ncbp->c_prev;
+ cbp->c_next = ncbp;
+ cbp->c_prev = pcbp;
+ ncbp->c_prev = cbp;
+ pcbp->c_next = cbp;
+}
+
+/*
+ * Return zero if it is valid to combine frame 'fcbp' with the frames
+ * in 'cbp' and forms a linked chain of frames (i.e., a tree; no loops).
+ * Return positive if combining frame 'fcbp' to the frames in 'cbp'
+ * would form some kind of valid loop. Also return the intersection spots
+ * in 'vertices[]' beside the known intersection at spot 'osp'.
+ * Return -1 if 'fcbp' should not be combined with 'cbp'.
+ * 's' is the combo value for frame 'fcpb'.
+ */
+checkframes(cbp, fcbp, osp, s, vertices)
+ struct combostr *cbp;
+ struct combostr *fcbp;
+ struct spotstr *osp;
+ int s;
+ struct ovlp_info *vertices;
+{
+ struct combostr *tcbp, *lcbp;
+ int i, n, mask, flg, verts, loop, index, fcnt;
+ union comboval cb;
+ u_char *str;
+ short *ip;
+
+ cb.s = s;
+ fcnt = cb.c.a - 2;
+ verts = 0;
+ loop = 0;
+ index = cbp->c_nframes;
+ n = (fcbp - frames) * FAREA;
+ str = &overlap[n];
+ ip = &intersect[n];
+ /*
+ * i == which overlap bit to test based on whether 'fcbp' is
+ * an open or closed frame.
+ */
+ i = cb.c.b ? 2 : 0;
+ for (; tcbp = cbp->c_link[1]; lcbp = cbp, cbp = cbp->c_link[0]) {
+ if (tcbp == fcbp)
+ return (-1); /* fcbp is already included */
+
+ /* check for intersection of 'tcbp' with 'fcbp' */
+ index--;
+ mask = str[tcbp - frames];
+ flg = cbp->c_flg;
+ n = i + ((flg & C_OPEN_1) != 0);
+ if (mask & (1 << n)) {
+ /*
+ * The two frames are not independent if they
+ * both lie in the same line and intersect at
+ * more than one point.
+ */
+ if (tcbp->c_dir == fcbp->c_dir && (mask & (0x10 << n)))
+ return (-1);
+ /*
+ * If this is not the spot we are attaching
+ * 'fcbp' to and it is a reasonable intersection
+ * spot, then there might be a loop.
+ */
+ n = ip[tcbp - frames];
+ if (osp != &board[n]) {
+ /* check to see if this is a valid loop */
+ if (verts)
+ return (-1);
+ if (fcnt == 0 || cbp->c_framecnt[1] == 0)
+ return (-1);
+ /*
+ * Check to be sure the intersection is not
+ * one of the end points if it is an open
+ * ended frame.
+ */
+ if ((flg & C_OPEN_1) &&
+ (n == tcbp->c_vertex ||
+ n == tcbp->c_vertex + 5 * dd[tcbp->c_dir]))
+ return (-1); /* invalid overlap */
+ if (cb.c.b &&
+ (n == fcbp->c_vertex ||
+ n == fcbp->c_vertex + 5 * dd[fcbp->c_dir]))
+ return (-1); /* invalid overlap */
+
+ vertices->o_intersect = n;
+ vertices->o_fcombo = cbp;
+ vertices->o_link = 1;
+ vertices->o_off = (n - tcbp->c_vertex) /
+ dd[tcbp->c_dir];
+ vertices->o_frameindex = index;
+ verts++;
+ }
+ }
+ n = i + ((flg & C_OPEN_0) != 0);
+ }
+ if (cbp == fcbp)
+ return (-1); /* fcbp is already included */
+
+ /* check for intersection of 'cbp' with 'fcbp' */
+ mask = str[cbp - frames];
+ if (mask & (1 << n)) {
+ /*
+ * The two frames are not independent if they
+ * both lie in the same line and intersect at
+ * more than one point.
+ */
+ if (cbp->c_dir == fcbp->c_dir && (mask & (0x10 << n)))
+ return (-1);
+ /*
+ * If this is not the spot we are attaching
+ * 'fcbp' to and it is a reasonable intersection
+ * spot, then there might be a loop.
+ */
+ n = ip[cbp - frames];
+ if (osp != &board[n]) {
+ /* check to see if this is a valid loop */
+ if (verts)
+ return (-1);
+ if (fcnt == 0 || lcbp->c_framecnt[0] == 0)
+ return (-1);
+ /*
+ * Check to be sure the intersection is not
+ * one of the end points if it is an open
+ * ended frame.
+ */
+ if ((flg & C_OPEN_0) &&
+ (n == cbp->c_vertex ||
+ n == cbp->c_vertex + 5 * dd[cbp->c_dir]))
+ return (-1); /* invalid overlap */
+ if (cb.c.b &&
+ (n == fcbp->c_vertex ||
+ n == fcbp->c_vertex + 5 * dd[fcbp->c_dir]))
+ return (-1); /* invalid overlap */
+
+ vertices->o_intersect = n;
+ vertices->o_fcombo = lcbp;
+ vertices->o_link = 0;
+ vertices->o_off = (n - cbp->c_vertex) /
+ dd[cbp->c_dir];
+ vertices->o_frameindex = 0;
+ verts++;
+ }
+ }
+ return (verts);
+}
+
+/*
+ * Merge sort the frame 'fcbp' and the sorted list of frames 'cbpp' and
+ * store the result in 'scbpp'. 'curlevel' is the size of the 'cbpp' array.
+ * Return true if this list of frames is already in the hash list.
+ * Otherwise, add the new combo to the hash list.
+ */
+sortcombo(scbpp, cbpp, fcbp)
+ struct combostr **scbpp;
+ struct combostr **cbpp;
+ struct combostr *fcbp;
+{
+ struct combostr **spp, **cpp;
+ struct combostr *cbp, *ecbp;
+ int n, inx;
+
+#ifdef DEBUG
+ if (debug > 3) {
+ char *str;
+
+ sprintf(fmtbuf, "sortc: %s%c l%d", stoc(fcbp->c_vertex),
+ pdir[fcbp->c_dir], curlevel);
+ dlog(fmtbuf);
+ str = fmtbuf;
+ for (cpp = cbpp; cpp < cbpp + curlevel; cpp++) {
+ sprintf(str, " %s%c", stoc((*cpp)->c_vertex),
+ pdir[(*cpp)->c_dir]);
+ str += strlen(str);
+ }
+ dlog(fmtbuf);
+ }
+#endif /* DEBUG */
+
+ /* first build the new sorted list */
+ n = curlevel + 1;
+ spp = scbpp + n;
+ cpp = cbpp + curlevel;
+ do {
+ cpp--;
+ if (fcbp > *cpp) {
+ *--spp = fcbp;
+ do
+ *--spp = *cpp;
+ while (cpp-- != cbpp);
+ goto inserted;
+ }
+ *--spp = *cpp;
+ } while (cpp != cbpp);
+ *--spp = fcbp;
+inserted:
+
+ /* now check to see if this list of frames has already been seen */
+ cbp = hashcombos[inx = *scbpp - frames];
+ if (cbp == (struct combostr *)0) {
+ /*
+ * Easy case, this list hasn't been seen.
+ * Add it to the hash list.
+ */
+ fcbp = (struct combostr *)
+ ((char *)scbpp - sizeof(struct combostr));
+ hashcombos[inx] = fcbp;
+ fcbp->c_next = fcbp->c_prev = fcbp;
+ return (0);
+ }
+ ecbp = cbp;
+ do {
+ cbpp = (struct combostr **)(cbp + 1);
+ cpp = cbpp + n;
+ spp = scbpp + n;
+ cbpp++; /* first frame is always the same */
+ do {
+ if (*--spp != *--cpp)
+ goto next;
+ } while (cpp != cbpp);
+ /* we found a match */
+#ifdef DEBUG
+ if (debug > 3) {
+ char *str;
+
+ sprintf(fmtbuf, "sort1: n%d", n);
+ dlog(fmtbuf);
+ str = fmtbuf;
+ for (cpp = scbpp; cpp < scbpp + n; cpp++) {
+ sprintf(str, " %s%c", stoc((*cpp)->c_vertex),
+ pdir[(*cpp)->c_dir]);
+ str += strlen(str);
+ }
+ dlog(fmtbuf);
+ printcombo(cbp, fmtbuf);
+ dlog(fmtbuf);
+ str = fmtbuf;
+ cbpp--;
+ for (cpp = cbpp; cpp < cbpp + n; cpp++) {
+ sprintf(str, " %s%c", stoc((*cpp)->c_vertex),
+ pdir[(*cpp)->c_dir]);
+ str += strlen(str);
+ }
+ dlog(fmtbuf);
+ }
+#endif /* DEBUG */
+ return (1);
+ next:
+ ;
+ } while ((cbp = cbp->c_next) != ecbp);
+ /*
+ * This list of frames hasn't been seen.
+ * Add it to the hash list.
+ */
+ ecbp = cbp->c_prev;
+ fcbp = (struct combostr *)((char *)scbpp - sizeof(struct combostr));
+ fcbp->c_next = cbp;
+ fcbp->c_prev = ecbp;
+ cbp->c_prev = fcbp;
+ ecbp->c_next = fcbp;
+ return (0);
+}
+
+/*
+ * Print the combo into string 'str'.
+ */
+printcombo(cbp, str)
+ struct combostr *cbp;
+ char *str;
+{
+ struct combostr *tcbp;
+
+ sprintf(str, "%x/%d", cbp->c_combo.s, cbp->c_nframes);
+ str += strlen(str);
+ for (; tcbp = cbp->c_link[1]; cbp = cbp->c_link[0]) {
+ sprintf(str, " %s%c%x", stoc(tcbp->c_vertex), pdir[tcbp->c_dir],
+ cbp->c_flg);
+ str += strlen(str);
+ }
+ sprintf(str, " %s%c", stoc(cbp->c_vertex), pdir[cbp->c_dir]);
+}
+
+#ifdef DEBUG
+markcombo(ocbp)
+ struct combostr *ocbp;
+{
+ struct combostr *cbp, *tcbp, **cbpp;
+ struct elist *ep, *nep, **epp;
+ struct spotstr *sp;
+ int s, d, m, i;
+ int nframes;
+ int r, n, flg, cmask, omask;
+
+ /* should never happen but check anyway */
+ if ((nframes = ocbp->c_nframes) >= MAXDEPTH)
+ return;
+
+ /*
+ * The lower level combo can be pointed to by more than one
+ * higher level 'struct combostr' so we can't modify the
+ * lower level. Therefore, higher level combos store the
+ * real mask of the lower level frame in c_emask[0] and the
+ * frame number in c_frameindex.
+ *
+ * First we traverse the tree from top to bottom and save the
+ * connection info. Then we traverse the tree from bottom to
+ * top overwriting lower levels with the newer emask information.
+ */
+ ep = &einfo[nframes];
+ cbpp = &ecombo[nframes];
+ for (cbp = ocbp; tcbp = cbp->c_link[1]; cbp = cbp->c_link[0]) {
+ ep--;
+ ep->e_combo = cbp;
+ *--cbpp = cbp->c_link[1];
+ ep->e_off = cbp->c_voff[1];
+ ep->e_frameindex = cbp->c_frameindex;
+ ep->e_fval.s = cbp->c_linkv[1].s;
+ ep->e_framecnt = cbp->c_framecnt[1];
+ ep->e_emask = cbp->c_emask[1];
+ }
+ cbp = ep->e_combo;
+ ep--;
+ ep->e_combo = cbp;
+ *--cbpp = cbp->c_link[0];
+ ep->e_off = cbp->c_voff[0];
+ ep->e_frameindex = 0;
+ ep->e_fval.s = cbp->c_linkv[0].s;
+ ep->e_framecnt = cbp->c_framecnt[0];
+ ep->e_emask = cbp->c_emask[0];
+
+ /* now update the emask info */
+ s = 0;
+ for (i = 2, ep += 2; i < nframes; i++, ep++) {
+ cbp = ep->e_combo;
+ nep = &einfo[ep->e_frameindex];
+ nep->e_framecnt = cbp->c_framecnt[0];
+ nep->e_emask = cbp->c_emask[0];
+
+ if (cbp->c_flg & C_LOOP) {
+ s++;
+ /*
+ * Account for the fact that this frame connects
+ * to a previous one (thus forming a loop).
+ */
+ nep = &einfo[cbp->c_dir];
+ if (--nep->e_framecnt)
+ nep->e_emask &= ~(1 << cbp->c_voff[0]);
+ else
+ nep->e_emask = 0;
+ }
+ }
+
+ /*
+ * We only need to update the emask values of "complete" loops
+ * to include the intersection spots.
+ */
+ if (s && ocbp->c_combo.c.a == 2) {
+ /* process loops from the top down */
+ ep = &einfo[nframes];
+ do {
+ ep--;
+ cbp = ep->e_combo;
+ if (!(cbp->c_flg & C_LOOP))
+ continue;
+
+ /*
+ * Update the emask values to include the
+ * intersection spots.
+ */
+ nep = &einfo[cbp->c_dir];
+ nep->e_framecnt = 1;
+ nep->e_emask = 1 << cbp->c_voff[0];
+ ep->e_framecnt = 1;
+ ep->e_emask = 1 << ep->e_off;
+ ep = &einfo[ep->e_frameindex];
+ do {
+ ep->e_framecnt = 1;
+ ep->e_emask = 1 << ep->e_off;
+ ep = &einfo[ep->e_frameindex];
+ } while (ep > nep);
+ } while (ep != einfo);
+ }
+
+ /* mark all the frames with the completion spots */
+ for (i = 0, ep = einfo, cbpp = ecombo; i < nframes; i++, ep++, cbpp++) {
+ m = ep->e_emask;
+ cbp = *cbpp;
+ sp = &board[cbp->c_vertex];
+ d = dd[s = cbp->c_dir];
+ cmask = CFLAG << s;
+ omask = (IFLAG | CFLAG) << s;
+ s = ep->e_fval.c.b ? 6 : 5;
+ for (; --s >= 0; sp += d, m >>= 1)
+ sp->s_flg |= (m & 1) ? omask : cmask;
+ }
+}
+
+clearcombo(cbp, open)
+ struct combostr *cbp;
+ int open;
+{
+ register struct spotstr *sp;
+ struct combostr *tcbp;
+ int d, n, mask;
+
+ for (; tcbp = cbp->c_link[1]; cbp = cbp->c_link[0]) {
+ clearcombo(tcbp, cbp->c_flg & C_OPEN_1);
+ open = cbp->c_flg & C_OPEN_0;
+ }
+ sp = &board[cbp->c_vertex];
+ d = dd[n = cbp->c_dir];
+ mask = ~((IFLAG | CFLAG) << n);
+ n = open ? 6 : 5;
+ for (; --n >= 0; sp += d)
+ sp->s_flg &= mask;
+}
+
+list_eq(scbpp, cbpp, n)
+ struct combostr **scbpp;
+ struct combostr **cbpp;
+ int n;
+{
+ struct combostr **spp, **cpp;
+
+ spp = scbpp + n;
+ cpp = cbpp + n;
+ do {
+ if (*--spp != *--cpp)
+ return (0);
+ } while (cpp != cbpp);
+ /* we found a match */
+ return (1);
+}
+#endif /* DEBUG */